1.安徽大学 物质科学与信息技术研究院,安徽 合肥 230601
2.武汉大学 工业科学研究院,湖北 武汉 430072
3.剑桥大学 工程系,英国 剑桥 CB2 1PZ
张梦蝶,女,硕士生,现从事半导体器件方面的研究,E-mail: q21201006@stu.ahu.edu.cn
季雯,女,硕士生,现从事半导体相关第一性原理方面的研究,E-mail: q22301206@stu.ahu.edu.cn
E-mail: rc921@cam.ac.uk,
E-mail: xitang@ahu.edu.cn
网络出版日期:2024-07-04,
收稿日期:2024-05-13,
扫 描 看 全 文
张梦蝶,季雯,曹茹月, 等.背栅效应下氮化镓功率器件中的载流子缺陷能级与结构研究[J].武汉大学学报(理学版),XXXX,XX(XX):1-6. DOI:10.14188/j.1671-8836.2024.0098.
ZHANG Mengdie,JI Wen,CAO Ruyue,et al.Research on Energy Levels and Structures of Carrier Defects in GaN Power Devices under Back-Gating Effects [J].J Wuhan Univ (Nat Sci Ed),XXXX,XX(XX):1-6. DOI:10.14188/j.1671-8836.2024.0098(Ch).
张梦蝶,季雯,曹茹月, 等.背栅效应下氮化镓功率器件中的载流子缺陷能级与结构研究[J].武汉大学学报(理学版),XXXX,XX(XX):1-6. DOI:10.14188/j.1671-8836.2024.0098. DOI:
ZHANG Mengdie,JI Wen,CAO Ruyue,et al.Research on Energy Levels and Structures of Carrier Defects in GaN Power Devices under Back-Gating Effects [J].J Wuhan Univ (Nat Sci Ed),XXXX,XX(XX):1-6. DOI:10.14188/j.1671-8836.2024.0098(Ch). DOI:
通过实验表征和理论计算为氮化镓功率器件中的材料缺陷和背栅效应之间提供了物理联系。首先制备了硅基氮化镓高电子迁移率晶体管;然后采用电流瞬态方法研究了器件中背栅效应下的缺陷能级,基于时间常数谱和阿伦尼乌斯定律分析,确定了三种主要的电子缺陷能级,分别为0.169、0.240和0.405 eV;最后,利用第一性原理计算研究了缺陷的可能结构。
The physical link between material defects and back-gating effects in GaN power devices is provided by both experiments and calculations. GaN high electron-mobility transistors were first fabricated on GaN-on-Si platform. Then
the defect level under back-gating effects were investigated by the current transient method. Three major electron defects were identified based on the time-constant spectra and Arrhenius law with energy levels of 0.169
0.240
and 0.405 eV
respectively. Finally
the possible structures of the defects were investigated by first-principles calculations.
背栅效应电流瞬态方法缺陷能级第一性原理计算
back-gating effectscurrent transient methoddefect levelfirst-principles calculations
LI X D, VAN HOVE M, ZHAO M, et al. 200 V enhancement-mode p-GaN HEMTs fabricated on 200 mm GaN-on-SOI with trench isolation for monolithic integration[J]. IEEE Electron Device Letters, 2017, 38(7): 918-921. DOI: 10.1109/LED.2017.2703304http://dx.doi.org/10.1109/LED.2017.2703304.
HUANG S, WEI K, LIU G G, et al. High-fMAX high Johnson’s figure-of-merit 0.2-<math id="M5"><mi mathvariant="normal">μ</mi><mi mathvariant="normal">m</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=61635744&type=2.96333337https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=61635745&type=4.06400013 gate AlGaN/GaN HEMTs on silicon substrate with AlN/SiNx passivation[J]. IEEE Electron Device Letters, 2014, 35(3):315-317. DOI: 10.1109/LED.2013.2296354http://dx.doi.org/10.1109/LED.2013.2296354.
ANUPAMA, REWARI S, PANDEY N. Numerical simulation and characterization of high-power gallium nitride based Junctionless Accumulation Mode Nanowire FET (GaN-JAM-NWFET) for small signal high frequency terahertz applications[J]. AEU‐International Journal of Electronics and Communications, 2024, 174: 155032. DOI: 10.1016/j.aeue.2023.155032http://dx.doi.org/10.1016/j.aeue.2023.155032.
CHEN K J, HÄBERLEN O, LIDOW A, et al. GaN-on-Si power technology: Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. DOI: 10.1109/TED.2017.2657579http://dx.doi.org/10.1109/TED.2017.2657579.
JAYANT BALIGA B. Gallium nitride devices for power electronic applications[J]. Semiconductor Science and Technology, 2013, 28(7): 074011. DOI: 10.1088/0268-1242/28/7/074011http://dx.doi.org/10.1088/0268-1242/28/7/074011.
WANG F Z, CHEN W J, SUN R Z, et al. An analytical model on the gate control capability in p-GaN Gate AlGaN/GaN high-electron-mobility transistors considering buffer acceptor traps[J]. Journal of Physics D: Applied Physics, 2021, 54(9): 095107. DOI: 10.1088/1361-6463/abc504http://dx.doi.org/10.1088/1361-6463/abc504.
PALACIOS T, ZUBAIR A, NIROULA J, et al. GaN 2.0: Power FinFETs, complementary gate drivers and low-cost vertical devices[C]//2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD). New York: IEEE Press, 2021: 6-10. DOI: 10.23919/ispsd50666.2021.9452205http://dx.doi.org/10.23919/ispsd50666.2021.9452205.
LYU G, WEI J, SONG W J, et al. A GaN power integration platform based on engineered bulk Si substrate with eliminated crosstalk between high-side and low-side HEMTs[C]//2021 IEEE International Electron Devices Meeting (IEDM). New York: IEEE Press, 2021: 5.2.1-5.2.4. DOI: 10.1109/IEDM19574.2021.9720505http://dx.doi.org/10.1109/IEDM19574.2021.9720505.
SUN R Z, LIANG Y C, YEO Y C, et al. All-GaN power integration: Devices to functional subcircuits and converter ICs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 31-41. DOI: 10.1109/JESTPE.2019.2946418http://dx.doi.org/10.1109/JESTPE.2019.2946418.
JIANG Q M, TANG Z K, ZHOU C H, et al. Substrate-coupled cross-talk effects on an AlGaN/GaN-on-Si smart power IC platform[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3808-3813. DOI: 10.1109/TED.2014.2355834http://dx.doi.org/10.1109/TED.2014.2355834.
PAGNANO D, LONGOBARDI G, UDREA F, et al. Suppression of substrate coupling in GaN high electron mobility transistors (HEMTs) by hole injection from the p-GaN gate[J]. Applied Physics Letters, 2019, 115(20): 203502-203507. DOI: 10.1063/1.5121637http://dx.doi.org/10.1063/1.5121637.
ZHOU C H, JIANG Q M, HUANG S, et al. Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si devices[J]. IEEE Electron Device Letters, 2012, 33(8): 1132-1134. DOI: 10.1109/LED.2012.2200874http://dx.doi.org/10.1109/LED.2012.2200874.
BINARI S C, KLEIN P B, KAZIOR T E. Trapping effects in GaN and SiC microwave FETs[J]. Proceedings of the IEEE, 2002, 90(6): 1048-1058. DOI: 10.1109/JPROC.2002.1021569http://dx.doi.org/10.1109/JPROC.2002.1021569.
DEL ALAMO J A, JOH J. GaN HEMT reliability[J]. Microelectronics Reliability, 2009, 49(9/10/11): 1200-1206. DOI: 10.1016/j.microrel.2009.07.003http://dx.doi.org/10.1016/j.microrel.2009.07.003.
JOH J, DEL ALAMO J A. A current-transient methodology for trap analysis for GaN high electron mobility transistors[J]. IEEE Transactions on Electron Devices, 2011, 58(1): 132-140. DOI: 10.1109/TED.2010.2087339http://dx.doi.org/10.1109/TED.2010.2087339.
PRASAD A, THORSELL M, ZIRATH H, et al. Analyzing the back-gating effect in GaN HEMTs with field-plates using an empirical trap model[C]//2021 IEEE MTT-S International Microwave and RF Conference (IMARC). New York: IEEE Press, 2021: 1-4. DOI: 10.1109/IMaRC49196.2021.9714650http://dx.doi.org/10.1109/IMaRC49196.2021.9714650.
YANG S, ZHOU C H, HAN S W, et al. Impact of substrate bias polarity on buffer-related current collapse in AlGaN/GaN-on-Si power devices[J]. IEEE Transactions on Electron Devices, 2017, 64(12): 5048-5056. DOI: 10.1109/TED.2017.2764527http://dx.doi.org/10.1109/TED.2017.2764527.
LYONS J L, JANOTTI A, VAN DE WALLE C G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN[J]. Physical Review B, 2014, 89(3): 035204. DOI: 10.1103/physrevb.89.035204http://dx.doi.org/10.1103/physrevb.89.035204.
FÜNER M, WILD C, KOIDL P. Novel microwave plasma reactor for diamond synthesis[J]. Applied Physics Letters, 1998, 72(10):1149-1151. DOI: 10.1063/1.120997http://dx.doi.org/10.1063/1.120997.
RAJA P V, BOUSLAMA M, SARKAR S, et al. Deep-level traps in AlGaN/GaN- and AlInN/GaN-based HEMTs with different buffer doping technologies[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2304-2310. DOI: 10.1109/TED.2020.2988439http://dx.doi.org/10.1109/TED.2020.2988439.
WANG H, LIN Y, JIANG J S, et al. Investigation of thermally induced threshold voltage shift in normally-OFF p-GaN gate HEMTs[J]. IEEE Transactions on Electron Devices, 2022, 69(5): 2287-2292. DOI: 10.1109/TED.2022.3157805http://dx.doi.org/10.1109/TED.2022.3157805.
MEDJDOUB F, INIEWSKI K. Gallium Nitride (GaN): Physics, Devices, and Technology[M]. Boca Raton: CRC Press, 2016. DOI: 10.4324/b19387http://dx.doi.org/10.4324/b19387.
MILLER G L, LANG D V, KIMERLING L C. Capacitance transient spectroscopy[J]. Annual Review of Materials Science, 1977, 7: 377-448. DOI: 10.1146/annurev.ms.07.080177.002113http://dx.doi.org/10.1146/annurev.ms.07.080177.002113.
ZHENG X, FENG S W, ZHANG Y M, et al. Identifying the spatial position and properties of traps in GaN HEMTs using current transient spectroscopy[J]. Microelectronics Reliability, 2016, 63: 46-51. DOI: 10.1016/j.microrel.2016.05.001http://dx.doi.org/10.1016/j.microrel.2016.05.001.
HSU P C, SIMOEN E, LIANG H, et al. Defect characterization in high-electron-mobility transistors with regrown p-GaN gate by low-frequency noise and deep-level transient spectroscopy[J]. Physica Status Solidi (a), 2021, 218(23): 2100227-2100235. DOI: 10.1002/pssa.202100227http://dx.doi.org/10.1002/pssa.202100227.
PAN S J, FENG S W, LI X, et al. A trap characterization system for GaN HEMTs based on transient drain voltage[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 6000912. DOI: 10.1109/TIM.2023.3335518http://dx.doi.org/10.1109/TIM.2023.3335518.
LI K X, MATSUDA T, YAGYU E, et al. Trapping phenomena in GaN HEMTs with Fe- and C-doped buffer[C]//2022 Device Research Conference (DRC). New York: IEEE Press, 2022: 1-2. DOI: 10.1109/DRC55272.2022.9855817http://dx.doi.org/10.1109/DRC55272.2022.9855817.
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. DOI: 10.1103/physrevb.54.11169http://dx.doi.org/10.1103/physrevb.54.11169.
DEMCHENKO D O, DIALLO I C, RESHCHIKOV M A. Yellow luminescence of gallium nitride generated by carbon defect complexes[J]. Physical Review Letters, 2013, 110(8): 087404. DOI: 10.1103/PhysRevLett.110.087404http://dx.doi.org/10.1103/PhysRevLett.110.087404.
YAN Q M, JANOTTI A, SCHEFFLER M, et al. Role of nitrogen vacancies in the luminescence of Mg-doped GaN[J]. Applied Physics Letters, 2012, 100(14): 142110-142115. DOI: 10.1063/1.3699009http://dx.doi.org/10.1063/1.3699009.
LYONS J L, GLASER E R, ZVANUT M E, et al. Carbon complexes in highly C-doped GaN[J]. Physical Review B, 2021, 104(7): 075201. DOI: 10.1103/physrevb.104.075201http://dx.doi.org/10.1103/physrevb.104.075201.
MATSUBARA M, BELLOTTI E. A first-principles study of carbon-related energy levels in GaN. Ⅰ. Complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies[J]. Journal of Applied Physics, 2017, 121(19): 195701-195714. DOI: 10.1063/1.4983452http://dx.doi.org/10.1063/1.4983452
HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215. DOI: 10.1063/1.1564060http://dx.doi.org/10.1063/1.1564060.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构