1.湖北经济学院 湖北物流发展研究中心,湖北 武汉 430205
2.武汉纺织大学 管理学院,湖北 武汉 430200
3.湖北省普通高校人才社会科学重点研究基地——企业决策支持研究中心,湖北 武汉 430073
4.华中科技大学 管理学院,湖北 武汉 430074
田倩南,女,副教授,现从事航空调度与优化,生产运作管理研究。E-mail:Tiqn07@hbue.edu.cn
E-mail: wlli@wtu.edu.cn
网络出版日期:2024-07-05,
收稿日期:2023-12-18,
扫 描 看 全 文
田倩南,李文莉,李杰.基于非完全覆盖的机场任务指派问题优化研究[J].武汉大学学报(理学版),XXXX,XX(XX):1-12. DOI:10.14188/j.1671-8836.2023.0265.
TIAN Qiannan,LI Wenli,LI Jie.Optimization of Airport Task Assignment Problem Based on Incomplete Coverage [J].J Wuhan Univ (Nat Sci Ed),XXXX,XX(XX):1-12. DOI:10.14188/j.1671-8836.2023.0265(Ch).
田倩南,李文莉,李杰.基于非完全覆盖的机场任务指派问题优化研究[J].武汉大学学报(理学版),XXXX,XX(XX):1-12. DOI:10.14188/j.1671-8836.2023.0265. DOI:
TIAN Qiannan,LI Wenli,LI Jie.Optimization of Airport Task Assignment Problem Based on Incomplete Coverage [J].J Wuhan Univ (Nat Sci Ed),XXXX,XX(XX):1-12. DOI:10.14188/j.1671-8836.2023.0265(Ch). DOI:
随着淡旺季不同以及临时突发状态的发生,机场会出现在某一时间段内任务量剧增而人员严重不足的情况。研究基于非完全覆盖的机场任务指派问题,以任务产生的效益最大化为第一目标函数,资格技能水平差总和最小化为第二目标函数,构建了多目标整数规划模型,设计了改进的多目标文化基因算法。在求解过程中,采用实际数据进行测试,测试结果表明:1) 通过与CPLEX优化软件对比,验证了所建模型和改进算法的准确性;2) 针对大规模算例,改进的算法在保证第一目标函数值近似最优解时,第二目标函数值都优于CPLEX求得的解,平均优化5.89%;3) 对覆盖率、班次工作时长等参数进行灵敏度分析,结果表明不同参数的设置对目标函数的影响显著。该研究不仅能够有效解决机场任务指派问题,而且可为企业实际运营决策提供科学依据。
With the difference of off-peak season and the occurrence of temporary emergencies
the airport will have the situation of severe shortage of personnel in a certain period when the task volume increases sharply. This paper studies consider not completely cover the airport task assignment problem
the first objective function is to maximize the benefits generated by the task
and the second objective function is to minimize the sum of the difference in the level of qualifications and skills
a multi-objective integer programming model is constructed
and an improved multi-objective memetic algorithm is designed. In the process of solving the problem
the actual data are tested and the numerical results show that compared with CPLEX optimization software
the accuracy of the built model and improved algorithm is verified. For large-scale examples
when the first objective function value is approximately optimal
the second objective function value is better than the CPLEX solution
with an average optimization of 5.89%. The sensitivity analysis of the coverage rate
shift working hours
and other parameters shows that the setting of different parameters has a significant impact on the objective function. This study can not only effectively solve the problem of airport task assignment
but also provide scientific basis for the actual operation decision of enterprises.
非完全覆盖整数规划模型改进的多目标文化基因算法
incomplete coverageinteger programming modelimproved multi-objective memetic algorithm
IP W H, WANG D W, CHO V. Aircraft ground service scheduling problems and their genetic algorithm with hybrid assignment and sequence encoding scheme[J]. IEEE Systems Journal, 2013, 7(4): 649-657. DOI: 10.1109/JSYST.2012.2196229http://dx.doi.org/10.1109/JSYST.2012.2196229.
KIERMAIER F, FREY M, BARD J F. The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers[J]. Journal of Scheduling, 2020, 23 (2): 177-209. DOI: 10.1007/s10951-019-00635-5http://dx.doi.org/10.1007/s10951-019-00635-5.
ZHENG H F, WANG Z M, ZHENG C P, et al. A graph multi-attention network for predicting airport delays[J]. Transportation Research Part E: Logistics and Transportation Review, 2024, 181:103375. DOI: 10.1016/j.tre.2023.103375http://dx.doi.org/10.1016/j.tre.2023.103375.
IKLI S, MANCEL C, MONGEAU M. The aircraft runway scheduling problem: A survey[J]. Computers & Operations Research, 2021, 132: 105336. DOI: 10.1016/j.cor.2021.105336http://dx.doi.org/10.1016/j.cor.2021.105336.
BAREA A, DE CELIS R, CADARSO L. An integrated model for airport runway assignment and aircraft trajectory optimization[J]. Transportation Research Part C: Emerging Technologies, 2024, 160: 104498. DOI: 10.1016/j.trc.2024.104498http://dx.doi.org/10.1016/j.trc.2024.104498.
LI J, LI K P, TIAN Q N, et al. A column generation-based algorithm for gate assignment problem with combinational gates[J]. Expert Systems with Applications, 2024, 238: 121792. DOI: 10.1016/j.eswa.2023.121792http://dx.doi.org/10.1016/j.eswa.2023.121792.
ORNEK M A, OZTURK C, SUGUT I. Integer and constraint programming model formulations for flight-gate assignment problem[J]. Operational Research, 2022, 22(1): 135-163. DOI: 10.1007/s12351-020-00563-9http://dx.doi.org/10.1007/s12351-020-00563-9.
田倩南, 李昆鹏, 李文莉, 等. 机场任务指派问题的优化方案研究[J]. 运筹与管理, 2019, 28(11): 1-8. DOI: 10.12005/orms.2019.0241http://dx.doi.org/10.12005/orms.2019.0241.
TIAN Q N, LI K P, LI W L, et al. Research on optimization of airport task assignment problem[J]. Operations Research and Management Science, 2019, 28(11): 1-8. DOI: 10.12005/orms.2019.0241(Chhttp://dx.doi.org/10.12005/orms.2019.0241(Ch).
CHEN S T, ERMIŞ G, SHARPANSKYKH A. Multi-agent planning and coordination for automated aircraft ground handling[J]. Robotics and Autonomous Systems, 2023, 167: 104480. DOI: 10.1016/j.robot.2023.104480http://dx.doi.org/10.1016/j.robot.2023.104480.
FREY M, KIERMAIER F, KOLISCH R. Optimizing inbound baggage handling at airports[J]. Transportation Science, 2017, 51(4): 1210-1225. DOI: 10.1287/trsc.2016.0702http://dx.doi.org/10.1287/trsc.2016.0702.
YANG X Q, FENG R C, XU P C, et al. Internet-of-Things-augmented dynamic route planning approach to the airport baggage handling system[J]. Computers & Industrial Engineering, 2023, 175: 108802. DOI: 10.1016/j.cie.2022.108802http://dx.doi.org/10.1016/j.cie.2022.108802.
GUPTA V, MITRA R, KOENIG F, et al. Predictive maintenance of baggage handling conveyors using IoT[J]. Computers & Industrial Engineering, 2023, 177: 109033. DOI:10.1016/j.cie.2023.109033http://dx.doi.org/10.1016/j.cie.2023.109033.
ZENG L S, ZHAO M Y, LIU Y F. Airport ground workforce planning with hierarchical skills: A new formulation and branch-and-price approach[J]. Annals of Operations Research, 2019, 275(1): 245-258. DOI: 10.1007/s10479-017-2624-yhttp://dx.doi.org/10.1007/s10479-017-2624-y.
GUIMARANS D, PADRÓN S. A stochastic approach for planning airport ground support resources[J]. International Transactions in Operational Research, 2022, 29(6): 3316-3345. DOI: 10.1111/itor.13104http://dx.doi.org/10.1111/itor.13104.
WANG W S, XIE K X, GUO S Q, et al. A shift-based model to solve the integrated staff rostering and task assignment problem with real-world requirements[J]. European Journal of Operational Research, 2023, 310(1): 360-378. DOI: 10.1016/j.ejor.2023.02.040http://dx.doi.org/10.1016/j.ejor.2023.02.040.
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. DOI: 10.1109/4235.996017http://dx.doi.org/10.1109/4235.996017.
XU D Y, LI K P, YANG J H, et al. A multicommodity unpaired pickup and delivery vehicle routing problem with split loads and unloads[J]. Industrial Management & Data Systems, 2020, 120(8): 1565-1584. DOI: 10.1108/IMDS-01-2020-0050http://dx.doi.org/10.1108/IMDS-01-2020-0050.
LI J, LI K P, TIAN Q N, et al. An improved column generation algorithm for the disrupted flight recovery problem with discrete flight duration control and aircraft assignment constraints[J]. Computers & Industrial Engineering, 2022, 174: 108772. DOI: 10.1016/j.cie.2022.108772http://dx.doi.org/10.1016/j.cie.2022.108772.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构