广东省电网有限责任公司电力科学研究院,广东 广州 510062
王 青,女,硕士,现从事压电纳米材料及相关柔性器件研究。E-mail:sdytwangqing@163.com
E-mail: siweipan@163.com
网络出版日期:2024-07-04,
收稿日期:2023-10-16,
扫 描 看 全 文
王青,盘思伟,赵耀洪, 等.静电纺PVDF纳米纤维膜的工艺参数优化及压电性能[J].武汉大学学报(理学版),XXXX,XX(XX):1-11. DOI:10.14188/j.1671-8836.2023.0195.
WANG Qing,PAN Siwei,ZHAO Yaohong,et al.Preparation and Piezoelectric Properties of PVDF Nanofiber Membrane by Electrospinning [J].J Wuhan Univ (Nat Sci Ed),XXXX,XX(XX):1-11. DOI:10.14188/j.1671-8836.2023.0195(Ch).
王青,盘思伟,赵耀洪, 等.静电纺PVDF纳米纤维膜的工艺参数优化及压电性能[J].武汉大学学报(理学版),XXXX,XX(XX):1-11. DOI:10.14188/j.1671-8836.2023.0195. DOI:
WANG Qing,PAN Siwei,ZHAO Yaohong,et al.Preparation and Piezoelectric Properties of PVDF Nanofiber Membrane by Electrospinning [J].J Wuhan Univ (Nat Sci Ed),XXXX,XX(XX):1-11. DOI:10.14188/j.1671-8836.2023.0195(Ch). DOI:
聚偏氟乙烯(PVDF)具有优良的柔韧性、稳定性和生物相容性,是制造柔性压电装置的理想材料。探讨了静电纺丝过程的关键工艺参数对PVDF纳米纤维膜的形貌和压电性能的影响。实验结果表明,聚合物溶液的浓度和溶剂组成对纺丝液的流变特性有显著影响,而静电纺丝的电压、流速和收集装置决定了纺丝液在电场中的形态转变和沉积过程。当采用质量比6∶4的DMF/丙酮混合溶剂、PVDF粉末质量分数12%、纺丝电压18 kV、纺丝液流速0.4 mL/h以及直径5 cm滚筒作为收集装置时,制备的PVDF纳米纤维膜具有最优的纤维形态和最高的
β
相含量(63.65%),并展现出优异的压电性能(输出电压2.2 V)。
Polyvinylidene fluoride (PVDF) is recognized for its superior flexibility
stability
and biocompatibility
making it an ideal material for the fabrication of flexible piezoelectric devices. This study focuses on the impact of the key electrospinning parameters on the morphology and piezoelectric performance of PVDF nanofiber membranes. The experimental findings reveal that the concentration of the polymer solution and the solvent composition significantly influence the rheological properties of the spinning solution. Furthermore
the electrospinning voltage
flow rate
and collection device dictate the morphological transformation and deposition process of the spinning solution within the electric field. Optimal fiber morphology and the highest
β
-phase content (63.65%)
along with excellent piezoelectric performance characterized by an output voltage of 2.2 V
were achieved when utilizing a mixed solvent of DMF and acetone with a mass ratio of 6∶4
a 12% mass fraction of PVDF powder
an electrospinning voltage of 18 kV
a spinning solution flow rate of 0.4 mL/h
and a 5 cm diameter drum as the collection device. This research not only provides detailed parameter guidance for the preparation of PVDF nanofiber membranes but also furnis
hes significant scientific evidence and technical support for their application in high-performance piezoelectric devices.
压电纳米纤维膜聚偏氟乙烯(PVDF)静电纺丝
piezoelectric nanofiber membranepolyvinylidene fluoride (PVDF)electrospinning
KWEON O Y, LEE S J, OH J H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers[J]. NPG Asia Materials, 2018, 10(6): 540-551. DOI: 10.1038/s41427-018-0041-6http://dx.doi.org/10.1038/s41427-018-0041-6.
MOGHADAM B H, HASANZADEH M, SIMCHI A. Self-powered wearable piezoelectric sensors based on polymer nanofiber–metal–organic framework nanoparticle composites for arterial pulse monitoring[J]. ACS Applied Nano Materials, 2020, 3(9): 8742-8752. DOI: 10.1021/acsanm.0c01551http://dx.doi.org/10.1021/acsanm.0c01551.
WU Y L, MA Y L, ZHENG H Y, et al. Piezoelectric materials for flexible and wearable electronics: A review[J]. Materials & Design, 2021, 211: 110164. DOI: 10.1016/j.matdes.2021.110164http://dx.doi.org/10.1016/j.matdes.2021.110164.
KAEWNU K, BOONNA S, KONGKAEW S, et al. A portable colorimetric device based on PVDF indicator gel for formaldehyde detection in food and wood products[J]. Microchemical Journal, 2023, 184: 108162. DOI: 10.1016/j.microc.2022.108162http://dx.doi.org/10.1016/j.microc.2022.108162.
LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251. DOI: 10.1016/j.nanoen.2020.105251http://dx.doi.org/10.1016/j.nanoen.2020.105251.
LEE W K, HA C S. Miscibility and surface crystal morphology of blends containing poly(vinylidene fluoride) by atomic force microscopy[J]. Polymer, 1998, 39(26): 7131-7134. DOI: 10.1016/s0032-3861(97)10081-7http://dx.doi.org/10.1016/s0032-3861(97)10081-7.
EL MOHAJIR B E, HEYMANS N. Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure[J]. Polymer, 2001, 42(13): 5661-5667. DOI: 10.1016/s0032-3861(01)00064-7http://dx.doi.org/10.1016/s0032-3861(01)00064-7.
MARTINS P, COSTA C M, BENELMEKKI M, et al. On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticlesvia surface electrostatic interactions[J]. CrystEngComm, 2012, 14(8): 2807-2811. DOI: 10.1039/C2CE06654Hhttp://dx.doi.org/10.1039/C2CE06654H.
MOHAMMADI B, YOUSEFI A A, BELLAH S M. Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films[J]. Polymer Testing, 2007, 26(1): 42-50. DOI: 10.1016/j.polymertesting.2006.08.003http://dx.doi.org/10.1016/j.polymertesting.2006.08.003.
KANG S J, BAE I, CHOI J H, et al. Fabrication of micropatterned ferroelectric gamma poly(vinylidene fluoride) film for non-volatile polymer memory[J]. Journal of Materials Chemistry, 2011, 21(11): 3619-3624. DOI: 10.1039/C0JM02732Dhttp://dx.doi.org/10.1039/C0JM02732D.
DAVIS G T, MCKINNEY J E, BROADHURST M G, et al. Electric-field-induced phase changes in poly(vinylidene fluoride)[J]. Journal of Applied Physics, 1978, 49(10): 4998-5002. DOI: 10.1063/1.324446http://dx.doi.org/10.1063/1.324446.
CORREIA H M G, RAMOS M M D. Quantum modelling of poly(vinylidene fluoride)[J]. Computational Materials Science, 2005, 33: 224-229. DOI: 10.1016/j.commatsci.2004.12.040http://dx.doi.org/10.1016/j.commatsci.2004.12.040.
DEBILI S, GASMI A, BOUOUDINA M. Synergistic effects of stretching/polarization temperature and electric field on phase transformation and piezoelectric properties of polyvinylidene fluoride nanofilms[J]. Applied Physics A, 2020, 126(4): 309. DOI: 10.1007/s00339-020-03492-8http://dx.doi.org/10.1007/s00339-020-03492-8.
PAN H Y, NA B, LV R H, et al. Polar phase formation in poly(vinylidene fluoride) induced by melt annealing[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(20): 1433-1437. DOI: 10.1002/polb.23146http://dx.doi.org/10.1002/polb.23146.
ZHANG H, WAN T, CHENG B W, et al. Polyvinylidene fluoride injection electrets: Preparation, characterization, and application in triboelectric nanogenerators[J]. Journal of Materials Research and Technology, 2020, 9(6): 12643-12653. DOI: 10.1016/j.jmrt.2020.09.020http://dx.doi.org/10.1016/j.jmrt.2020.09.020.
DE NEEF A, SAMUEL C, STOCLET G, et al. Processing of PVDF-based electroactive/ferroelectric films: Importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals[J]. Soft Matter, 2018, 14(22): 4591-4602. DOI: 10.1039/c8sm00268ahttp://dx.doi.org/10.1039/c8sm00268a.
KALIMULDINA G, TURDAKYN N, ABAY I, et al. A review of piezoelectric PVDF film by electrospinning and its applications[J]. Sensors, 2020, 20(18): 5214. DOI: 10.3390/s20185214http://dx.doi.org/10.3390/s20185214.
PARK S H, LEE H B, YEON S M, et al. Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24773-24781. DOI: 10.1021/acsami.6b07833http://dx.doi.org/10.1021/acsami.6b07833.
SZEWCZYK P K, GRADYS A, KIM S K, et al. Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13575-13583. DOI: 10.1021/acsami.0c02578http://dx.doi.org/10.1021/acsami.0c02578.
LI D, XIA Y. Electrospinning of nanofibers: Reinventing the wheel?[J]. Advanced Materials, 2004, 16(14): 1151-1170. DOI: 10.1002/adma.200400719http://dx.doi.org/10.1002/adma.200400719.
QIU J, LV Q Y, LI D L, et al. 2D organic-inorganic perovskite (ATHP)2PbI4 with huge out-of-plane piezoelectric properties[J]. IEEE Electron Device Letters, 2023, 44(6): 987-990. DOI: 10.1109/LED.2023.3266877http://dx.doi.org/10.1109/LED.2023.3266877.
ZHENG J F, HE A H, LI J X, et al. Polymorphism control of poly(vinylidene fluoride) through electrospinning[J]. Macromolecular Rapid Communications, 2007, 28(22): 2159-2162. DOI: 10.1002/marc.200700544http://dx.doi.org/10.1002/marc.200700544.
DEITZEL J M, KLEINMEYER J, HARRIS D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001, 42(1): 261-272. DOI: 10.1016/s0032-3861(00)00250-0http://dx.doi.org/10.1016/s0032-3861(00)00250-0.
DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics, 1995, 35(2): 151-160. DOI: 10.1016/0304-3886(95)00041-8http://dx.doi.org/10.1016/0304-3886(95)00041-8.
GHEIBI A, BAGHERZADEH R, MERATI A A, et al. Electrical power generation from piezoelectric electrospun nanofibers membranes: Electrospinning parameters optimization and effect of membranes thickness on output electrical voltage[J]. Journal of Polymer Research, 2014, 21(11): 571. DOI: 10.1007/s10965-014-0571-8http://dx.doi.org/10.1007/s10965-014-0571-8.
BHARDWAJ N, KUNDU S C. Electrospinning: A fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325-347. DOI: 10.1016/j.biotechadv.2010.01.004http://dx.doi.org/10.1016/j.biotechadv.2010.01.004.
HE Z C, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement[J]. Polymers, 2021, 13(2): 174. DOI: 10.3390/polym13020174http://dx.doi.org/10.3390/polym13020174.
COZZA E S, MONTICELLI O, MARSANO E, et al. On the electrospinning of PVDF: Influence of the experimental conditions on the nanofiber properties[J]. Polymer International, 2013, 62(1): 41-48. DOI: 10.1002/pi.4314http://dx.doi.org/10.1002/pi.4314.
CHONG E J, PHAN T T, LIM I J, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution[J]. Acta Biomaterialia, 2007, 3(3): 321-330. DOI: 10.1016/j.actbio.2007.01.002http://dx.doi.org/10.1016/j.actbio.2007.01.002.
FANG J, WANG H X, NIU H T, et al. Evolution of fiber morphology during electrospinning[J]. Journal of Applied Polymer Science, 2010, 118(5): 2553-2561. DOI: 10.1002/app.32569http://dx.doi.org/10.1002/app.32569.
ZHAO Z Z, LI J Q, YUAN X Y, et al. Preparation and properties of electrospun poly(vinylidene fluoride) membranes[J]. Journal of Applied Polymer Science, 2005, 97(2): 466-474. DOI: 10.1002/app.21762http://dx.doi.org/10.1002/app.21762.
BOTTINO A, CAPANNELLI G, MUNARI S, et al. Solubility parameters of poly(vinylidene fluoride)[J]. Journal of Polymer Science Part B: Polymer Physics, 1988, 26(4): 785-794. DOI: 10.1002/polb.1988.090260405http://dx.doi.org/10.1002/polb.1988.090260405.
ZHANG R F, LIU C, HSU P C, et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources[J]. Nano Letters, 2016, 16(6): 3642-3649. DOI: 10.1021/acs.nanolett.6b00771http://dx.doi.org/10.1021/acs.nanolett.6b00771.
ŠIMKO M, LUKÁŠ D. Mathematical modeling of a whipping instability of an electrically charged liquid jet[J]. Applied Mathematical Modelling, 2016, 40(21): 9565-9583. DOI: 10.1016/j.apm.2016.06.018http://dx.doi.org/10.1016/j.apm.2016.06.018.
AVOSSA J, HERWIG G, TONCELLI C, et al. Electrospinning based on benign solvents: Current definitions, implications and strategies[J]. Green Chemistry, 2022, 24(6): 2347-2375. DOI: 10.1039/d1gc04252ahttp://dx.doi.org/10.1039/d1gc04252a.
FILIP P, ZELENKOVA J, PEER P. Electrospinning of a copolymer PVDF-co-HFP solved in DMF/acetone: Explicit relations among viscosity, polymer concentration, DMF/acetone ratio and mean nanofiber diameter[J]. Polymers, 2021, 13(19): 3418. DOI: 10.3390/polym13193418http://dx.doi.org/10.3390/polym13193418.
MOTAMEDI A S, MIRZADEH H, HAJIESMAEILBAIGI F, et al. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds[J]. Progress in Biomaterials, 2017, 6(3): 113-123. DOI: 10.1007/s40204-017-0071-0http://dx.doi.org/10.1007/s40204-017-0071-0.
SHAO H, FANG J, WANG H X, et al. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats[J]. RSC Advances, 2015, 5(19): 14345-14350. DOI: 10.1039/C4RA16360Ehttp://dx.doi.org/10.1039/C4RA16360E.
AL-HAZEEM N Z, HASSAN Z, MOHAMMAD S M, et al. Formation of titanium dioxide/poly(vinylpyrrolidone) nanostructure composite by changing the flow rate of polymer solution during electrospinning[J]. Bulletin of Materials Science, 2022, 45(2): 67. DOI: 10.1007/s12034-022-02656-xhttp://dx.doi.org/10.1007/s12034-022-02656-x.
ZULFIKAR M A, AFRIANINGSIH I, NASIR M, et al. Effect of processing parameters on the morphology of PVDF electrospun nanofiber[J]. Journal of Physics: Conference Series, 2018, 987: 012011. DOI: 10.1088/1742-6596/987/1/012011http://dx.doi.org/10.1088/1742-6596/987/1/012011.
LINS L C, WIANNY F, LIVI S, et al. Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017, 105(8): 2376-2393. DOI: 10.1002/jbm.b.33778http://dx.doi.org/10.1002/jbm.b.33778.
WANG X E, ZHU H J, GREENE G W, et al. Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning[J]. Journal of Materials Chemistry A, 2016, 4(25): 9873-9880. DOI: 10.1039/C6TA02817Ahttp://dx.doi.org/10.1039/C6TA02817A.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构