1.华中科技大学 化学与化工学院,湖北 武汉 430074
扫 描 看 全 文
AN Lulu, WANG Deli. Design Strategy of Highly Efficient and Stable Electrocatalyst for Alkaline Hydrogen Oxidation Reaction. [J]. J Wuhan Univ (Nat Sci Ed) 69(4):419-421(2023)
AN Lulu, WANG Deli. Design Strategy of Highly Efficient and Stable Electrocatalyst for Alkaline Hydrogen Oxidation Reaction. [J]. J Wuhan Univ (Nat Sci Ed) 69(4):419-421(2023) DOI: 10.14188/j.1671-8836.2023.0150.
ZHAO Z P, LIU Z Y, ZHANG A, et al. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions[J]. Nature Nanotechnology, 2022, 17(9): 968-975. DOI: 10.1038/s41565-022-01170-9http://dx.doi.org/10.1038/s41565-022-01170-9.
NI W Y, WANG T, HÉROGUEL F, et al. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells[J]. Nature Materials, 2022, 21(7): 804-810. DOI: 10.1038/s41563-022-01221-5http://dx.doi.org/10.1038/s41563-022-01221-5.
SETZLER B P, ZHUANG Z B, WITTKOPF J A, et al. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells[J]. Nature Nanotechnology, 2016, 11(12): 1020-1025. DOI: 10.1038/nnano.2016.265http://dx.doi.org/10.1038/nnano.2016.265.
GAO F Y, LIU S N, GE J C, et al. Nickel-molybdenum-niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells[J]. Nature Cata- lysis, 2022, 5(11): 993-1005. DOI: 10.1038/s41929-022-00862-8http://dx.doi.org/10.1038/s41929-022-00862-8.
TANG T, LIU X Z, LUO X, et al. Unconventional bilateral compressive strained Ni-Ir interface synergistically accelerates alkaline hydrogen oxidation[J]. Journal of the American Chemical Society, 2023, 145(25):13805-13815. DOI: 10.1021/jacs.3c02487http://dx.doi.org/10.1021/jacs.3c02487.
SEROV A. Nickel catalysts for affordable fuel cells[J]. Nature Catalysis, 2022, 5(11): 971-972. DOI: 10.1038/s41929-022-00872-6http://dx.doi.org/10.1038/s41929-022-00872-6.
DURST J, SIEBEL A, SIMON C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy & Environmental Science, 2014, 7(7): 2255-2260. DOI: 10.1039/c4ee00440jhttp://dx.doi.org/10.1039/c4ee00440j.
ZHANG X B, XIA L X, ZHAO G Q, et al. Fast and durable alkaline hydrogen oxidation reaction at the electron-deficient ruthenium-ruthenium oxide interface[J]. Advanced Materials, 2023, 35(9): 2208821. DOI: 10.1002/adma.202208821http://dx.doi.org/10.1002/adma.202208821.
ZHAO X, LI X Y, AN L L, et al. Controlling the valence-electron arrangement of nickel active centers for efficient hydrogen oxidation electrocatalysis[J]. Angewandte Chemie International Edition, 2022, 61(32): e202206588. DOI: 10.1002/anie.202206588http://dx.doi.org/10.1002/anie.202206588.
SHENG W C, ZHUANG Z B, GAO M R, et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy[J]. Nature Communications, 2015, 6: 5848. DOI: 10.1038/ncomms6848http://dx.doi.org/10.1038/ncomms6848.
ZHENG J, SHENG W C, ZHUANG Z B, et al. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy[J]. Science Advances, 2016, 2(3): e1501602. DOI: 10.1126/sciadv.1501602http://dx.doi.org/10.1126/sciadv.1501602.
STRMCNIK D, UCHIMURA M, WANG C, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption[J]. Nature Chemistry, 2013, 5(4): 300-306. DOI: 10.1038/NCHEM.1574http://dx.doi.org/10.1038/NCHEM.1574.
LI J K, GHOSHAL S, BATES M K, et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media[J]. Angewandte Chemie International Edition, 2017, 56(49): 15594-15598. DOI: 10.1002/anie.201708484http://dx.doi.org/10.1002/anie.201708484.
SU L X, ZHAO Y M, JIN Y M, et al. Identifying the role of hydroxyl binding energy in a non-monotonous behavior of Pd-Pd4S for hydrogen oxidation reaction[J]. Advanced Functional Materials, 2022, 32(27): 2113047. DOI: 10.1002/adfm.202113047http://dx.doi.org/10.1002/adfm.202113047.
SU L X, JIN Y M, GONG D, et al. The role of discrepant reactive intermediates on Ru-Ru2P heterostructure for pH-universal hydrogen oxidation reaction[J]. Angewandte Chemie International Edition, 2023, 62(2): e2022155. DOI: 10.1002/anie.202215585http://dx.doi.org/10.1002/anie.202215585.
SU L X, CHEN J X, YANG F L, et al. Electric-double-layer origin of the kinetic pH effect of hydrogen electrocatalysis revealed by a universal hydroxide adsorption-dependent inflection-point behavior[J]. Journal of the American Chemical Society, 2023, 145(22): 12051-12058. DOI: 10.1021/jacs.3c01164http://dx.doi.org/10.1021/jacs.3c01164.
ZHAO T H, LI M T, XIAO D D, et al. Pseudo-Pt monolayer for robust hydrogen oxidation[J]. Journal of the American Chemical Society, 2023, 145(7): 4088-4097. DOI: 10.1021/jacs.2c11907http://dx.doi.org/10.1021/jacs.2c11907.
0
Views
35
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution