1.武汉工程大学 材料科学与工程学院,湖北 武汉 430205
扫 描 看 全 文
YANG Chenguang, LI Bei, TANG Ao, et al. Progress on Mn-Based NASICON-Structured Cathode Materials for Sodium-Ion Batteries. [J]. J Wuhan Univ (Nat Sci Ed) 69(4):432-439(2023)
YANG Chenguang, LI Bei, TANG Ao, et al. Progress on Mn-Based NASICON-Structured Cathode Materials for Sodium-Ion Batteries. [J]. J Wuhan Univ (Nat Sci Ed) 69(4):432-439(2023) DOI: 10.14188/j.1671-8836.2022.0305.
Mn基钠超离子导体(NASICON)结构材料NaMnM(PO,4,),3,(M=V、Ti、Cr、Zr、Fe等)具有组分、结构、电位可调且成本低等特点,作为钠离子电池正极材料极具应用前景。本文系统总结了Mn基NASICON结构材料的结构特征和电化学性能,探讨了该类材料存在的关键问题以及改性途径,并提出其作为正极材料未来的研究方向。
Mn-based sodium superionic conductor (NASICON) structured materials (NaMnM(PO,4,),3, M=V, Ti, Cr, Zr, Fe) have a promising application prospect as cathode materials for sodium-ion batteries, due to their advantages of the good adjustability of composition, structure and potential, as well as low cost. This review summarizes the structural and electrochemical characteristics of Mn-based NASICON-structured materials, then analyzes the main issues of the materials and their corresponding modification strategies, and finally suggests the future research directions of such materials as cathodes for sodium-ion batteries.
钠离子电池正极材料NASICON电化学性能
sodium-ion batterycathode materialNASICONelectrochemical performance
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3: 1-11. DOI: 10.1038/natrevmats.2018.13http://dx.doi.org/10.1038/natrevmats.2018.13.
SLATER M D, KIM D, LEE E, et al. Sodium‐ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. DOI: 10.1002/adfm.201200691http://dx.doi.org/10.1002/adfm.201200691.
HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. DOI: 10.1039/c6cs00776ghttp://dx.doi.org/10.1039/c6cs00776g.
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. DOI: 10.1021/cr500192fhttp://dx.doi.org/10.1021/cr500192f.
HU P, ZOU Z Y, SUN X W, et al. Uncovering the potential of M1‐site‐activated NASICON cathodes for Zn‐ion batteries[J]. Advanced Materials, 2020, 32(14): 1907526. DOI: 10.1002/adma.201907526http://dx.doi.org/10.1002/adma.201907526.
CHEN S Q, WU C, SHEN L F, et al. Challenges and perspectives for NASICON‐type electrode materials for advanced sodium‐ion batteries[J]. Advanced Materials, 2017, 29(48): 1700431. DOI: 10.1002/adma.201700431http://dx.doi.org/10.1002/adma.201700431.
JIAN Z L, HU Y S, JI X L, et al. NASICON‐structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925. DOI: 10.1002/adma.201601925http://dx.doi.org/10.1002/adma.201601925.
HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. DOI: 10.1016/0025-5408(76)90073-8http://dx.doi.org/10.1016/0025-5408(76)90073-8.
GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. DOI: 10.1016/0025-5408(76)90077-5http://dx.doi.org/10.1016/0025-5408(76)90077-5.
CHIHARA K, KITAJOU A, GOCHEVA I D, et al. Cathode properties of Na3M2(PO4)2F3 [M=Ti, Fe, V] for sodium-ion batteries[J].Journal of Power Sources, 2013, 227: 80–85. DOI: 10.1016/j.jpowsour.2012.10.034http://dx.doi.org/10.1016/j.jpowsour.2012.10.034.
JIAN Z L, HAN W Z, LU X, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room‐temperature sodium‐ion batteries[J]. Advanced Energy Materials, 2013, 3(2): 156-160. DOI: 10.1002/aenm.201200558http://dx.doi.org/10.1002/aenm.201200558.
SARAVANAN K, MASON C W, RUDOLA A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries[J]. Advanced Energy Materials, 2013, 3(4): 444-450. DOI: 10.1002/aenm.201200803http://dx.doi.org/10.1002/aenm.201200803.
ZENG X G, PENG J, GUO Y, et al. Research progress on Na3V2(PO4)3 cathode material of sodium ion battery[J]. Frontiers in Chemistry, 2020, 8: 635. DOI: 10.3389/fchem.2020.00635http://dx.doi.org/10.3389/fchem.2020.00635.
ZHU C B, SONG K P, VAN AKEN P A, et al. Carbon-coated Na3V2 (PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014, 14(4): 2175-2180. DOI: 10.1021/nl500548ahttp://dx.doi.org/10.1021/nl500548a.
JIANG Y, YANG Z Z, LI W H, et al. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(10): 1402104. DOI: 10.1002/aenm.201402104http://dx.doi.org/10.1002/aenm.201402104.
ZHANG Q, WANG W, WANG Y J, et al. Controllable construction of 3D-skeleton-carbon coated Na3V2(PO4)3 for high-performance sodium ion battery cathode[J]. Nano Energy, 2016, 20: 11-19. DOI:10.1016/j.nanoen.2015.12.005http://dx.doi.org/10.1016/j.nanoen.2015.12.005.
HU P, WANG X F, WANG T S, et al. Boron substituted Na3V2(P1-xBxO4)3 cathode materials with enhanced performance for sodium‐ion batteries[J]. Advanced science, 2016, 3(12): 1600112. DOI: 10.1002/advs.201600525http://dx.doi.org/10.1002/advs.201600525.
LI H, TANG H M, MA C Z, et al. Understanding the electrochemical mechanisms induced by gradient Mg2+ distribution of Na-rich Na3+xV2-xMgx(PO4)3/C for sodium ion batteries[J]. Chemistry of Materials, 2018, 30(8): 2498-2505. DOI: 10.1021/acs.chemmater.7b03903http://dx.doi.org/10.1021/acs.chemmater.7b03903.
LI H, BAI Y, WU F, et al. Na-rich Na3+xV2-xNix(PO4)3/C for sodium ion batteries: Controlling the doping site and improving the electrochemical performances[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27779-27787. DOI: 10.1021/acsami.6b09898http://dx.doi.org/10.1021/acsami.6b09898.
SHEN X, HAN M, SU Y, et al. Alkali metal ion induced lattice regulation for all climate NASICON-type cathode with superior Na-storage performance[J]. Nano Energy, 2023, 114: 108640. DOI:10.1016/j.nanoen.2023.108640http://dx.doi.org/10.1016/j.nanoen.2023.108640.
ZAKHARKIN M V, DROZHZHIN O A, TERESH-CHENKO I V, et al. Enhancing Na+ extraction limit through high voltage activation of the NASICON-type Na4MnV(PO4)3 cathode[J]. ACS Applied Energy Materials, 2018, 1(11): 5842-5846. DOI: 10.1021/acsaem.8b01269http://dx.doi.org/10.1021/acsaem.8b01269.
ZHANG J, LIU Y C, ZHAO X D, et al. A novel NASICON‐type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium‐ion batteries[J]. Advanced Materials, 2020, 32(11): 1906348. DOI: 10.1002/adma.201906348http://dx.doi.org/10.1002/adma.201906348.
ZHANG W, LI H X, ZHANG Z A, et al. Full activation of Mn4+/Mn3+ redox in Na4MnCr(PO4)3 as a high‐voltage and high‐rate cathode material for sodium‐ion batteries[J]. Small, 2020, 16(25): 2001524. DOI: 10.1002/smll.202001524http://dx.doi.org/10.1002/smll.202001524.
ZHANG H, JEONG S, QIN B S, et al. Towards high‐performance aqueous sodium‐ion batteries: Stabilizing the solid/liquid interface for NASICON‐type Na2VTi(PO4)3 using concentrated electrolytes[J]. ChemSusChem, 2018, 11(8): 1382-1389. DOI: 10.1002/cssc.201800194http://dx.doi.org/10.1002/cssc.201800194.
WANG H B, ZHANG T R, CHEN C, et al. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3[J]. Nano Research, 2018, 11(1): 490-498. DOI: 10.1007/s12274-017-1657-5http://dx.doi.org/10.1007/s12274-017-1657-5.
GILANKAR A, MITRA A, SINGH J, et al. Investigations on different strategies towards improving the electrochemical properties of Na2VTi(PO4)3 for symmetrical sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 851: 156813. DOI: 10.1016/j.jallcom.2020.156813http://dx.doi.org/10.1016/j.jallcom.2020.156813.
GAO H C, SEYMOUR I D, XIN S, et al. Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries[J]. Journal of the American Chemical Society, 2018, 140(51): 18192-18199. DOI: 10.1021/jacs.8b11388http://dx.doi.org/10.1021/jacs.8b11388.
CAO Y J, YANG C, LIU Y, et al. A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries[J]. ACS Energy Letters, 2020, 5(12):3788-3796. DOI: 10.1021/acsenergylett.0c01902http://dx.doi.org/10.1021/acsenergylett.0c01902.
XU C L, ZHAO J M, WANG E H, et al. A novel NASICON‐typed Na4VMn0.5Fe0.5(PO4)3 cathode for high‐performance Na‐ion batteries[J]. Advanced Energy Materials, 2021, 11(22): 2100729. DOI: 10.1002/aenm.202100729http://dx.doi.org/10.1002/aenm.202100729.
CHEN F, KOVRUGIN V M, DAVID R, et al. A NASICON‐type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3[J]. Small Methods, 2019, 3(4): 1800218. DOI: 10.1002/smtd.201800218http://dx.doi.org/10.1002/smtd.201800218.
ZHOU W, XUE L, LÜ X, et al. NaxMV(PO4)3 (M=Mn, Fe,Ni) structure and properties for sodium extraction[J]. Nano Letters, 2016, 16(12): 7836-7841. DOI: 10.1021/acs.nanolett.6b04044http://dx.doi.org/10.1021/acs.nanolett.6b04044.
ESSEHLI R, ALKHATEEB A, MAHMOUD A, et al. Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2-xVx (PO4)(SO4)2[J]. Journal of Power Sources, 2020, 469: 228417. DOI: 10.1016/j.jpowsour.2020.228417http://dx.doi.org/10.1016/j.jpowsour.2020.228417.
FANG R H, OLCHOWKA J, PABLOS C, et al. Impact of the F- for O2- substitution in Na3V2(PO4)2F3-yOy on their transport properties and electrochemical performance[J]. ACS Applied Energy Materials, 2022, 5(1): 1065-1075. DOI: 10.1021/acsaem.1c03446http://dx.doi.org/10.1021/acsaem.1c03446.
GAO X Y, LIAN R Q, HE L, et al. Phase transformation, charge transfer, and ionic diffusion of Na4MnV(PO4)3 in sodium-ion batteries: A combined first-principles and experimental study[J]. Journal of Materials Chemistry A, 2020, 8(34): 17477-17486. DOI: 10.1039/D0TA05929Chttp://dx.doi.org/10.1039/D0TA05929C.
ZHU T, HU P, WANG X P, et al. Realizing three‐electron redox reactions in NASICON‐structured Na3MnTi(PO4)3 for sodium‐ion batteries[J]. Advanced Energy Materials, 2019, 9(9):1803436. DOI: 10.1002/aenm.201803436http://dx.doi.org/10.1002/aenm.201803436.
LAVELA P, KLEE R, TIRADO J L. On the benefits of Cr substitution on Na4MnV(PO4)3 to improve the high voltage performance as cathode for sodium-ion batteries[J]. Journal of Power Sources, 2021, 495: 229811. DOI: 10.1016/j.jpowsour.2021.229811http://dx.doi.org/10.1016/j.jpowsour.2021.229811.
WANG J Y, WANG Y, SEO D H, et al. A high‐energy NASICON‐type cathode material for Na‐ion batteries[J]. Advanced Energy Materials, 2020, 10(10):1903968. DOI: 10.1002/aenm.201903968http://dx.doi.org/10.1002/aenm.201903968.
SINGH B, WANG Z L, PARK S, et al. A chemical map of NaSICON electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(1):281-292. DOI: 10.1039/d0ta10688ghttp://dx.doi.org/10.1039/d0ta10688g.
ZAKHARKIN M V, DROZHZHIN O A, RYAZANTSEV S V, et al. Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) cathodes for Na-ion batteries[J]. Journal of Power Sources, 2020, 470:228231. DOI: 10.1016/j.jpowsour.2020.228231http://dx.doi.org/10.1016/j.jpowsour.2020.228231.
ANISHCHENKO D V, ZAKHARKIN M V, NIKITINA V A, et al. Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) materials[J]. Electrochimica Acta, 2020, 354:136761. DOI: 10.1016/j.electacta.2020.136761http://dx.doi.org/10.1016/j.electacta.2020.136761.
TANG A, LIN W G, XIAO D D, et al. High rate capability achieved by reducing the miscibility gap of Na4-xMnV(PO4)3[J]. Inorganic Chemistry Frontiers, 2022, 9(21):5454-5462. DOI: 10.1039/d2qi01568dhttp://dx.doi.org/10.1039/d2qi01568d.
CHENG S Q, LI W N, XIAO S H, et al. Effects of calcination temperature on electrochemical properties of cathode material Na4MnV(PO4)3/C synthesized by sol-gel method for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 850:156707. DOI: 10.1016/j.jallcom.2020.156707http://dx.doi.org/10.1016/j.jallcom.2020.156707.
ZHANG W, ZHANG Z A, LI H X, et al. Engineering 3D well-interconnected Na4MnV(PO4)3 facilitates ultrafast and ultrastable sodium storage[J]. ACS applied materials & interfaces, 2019, 11(39): 35746-35754. DOI: 10.1021/acsami.9b12214http://dx.doi.org/10.1021/acsami.9b12214.
ZHU T, HU P, CAI C C, et al. Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries[J]. Nano Energy, 2020, 70: 104548. DOI: 10.1016/j.nanoen.2020.104548http://dx.doi.org/10.1016/j.nanoen.2020.104548.
ZOU Z Y, LI Y J, LU Z H, et al. Mobile ions in composite solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221. DOI: 10.1021/acs.chemrev.9b00760http://dx.doi.org/10.1021/acs.chemrev.9b00760.
WANG Q, ZHANG M Y, ZHOU C G, et al. Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework[J]. The Journal of Physical Chemistry C, 2018, 122(29): 16649-16654. DOI:10.1021/acs.jpcc.8b06120http://dx.doi.org/10.1021/acs.jpcc.8b06120.
RAJAGOPALAN R, ZHANG Z N, TANG Y G, et al. Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials[J]. Energy Storage Materials, 2021, 34: 171-193. DOI: 10.1016/j.ensm.2020.09.007http://dx.doi.org/10.1016/j.ensm.2020.09.007.
GHOSH S, BARMAN N, MAZUMDER M, et al. High capacity and high-rate NASICON‐Na3.75V1.25Mn0.75(PO4)3 cathode for Na‐ion batteries via modulating electronic and crystal structures[J]. Advanced Energy Materials, 2020, 10: 1902918. DOI: 10.1002/aenm.201902918http://dx.doi.org/10.1002/aenm.201902918.
ZHANG J, ZHAO X D, SONG Y Z, et al. Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode[J]. Energy Storage Materials, 2019, 23: 25-34. DOI: 10.1016/j.ensm.2019.05.041http://dx.doi.org/10.1016/j.ensm.2019.05.041.
KUMAR P R, KHEIREDDINE A, NISAR U, et al. Na4MnV(PO4)3-rGO as Advanced cathode for aqueous and non-aqueous sodium ion batteries[J]. Journal of Power Sources, 2019, 429: 149-155. DOI: 10.1016/j.jpowsour.2019.04.080http://dx.doi.org/10.1016/j.jpowsour.2019.04.080.
CUI G, DDONG Q, WANG Z, et al. Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-rGO composite with low-fraction rGO via spray-drying technique[J]. Nano Energy, 2021, 89: 106462. DOI: 10.1016/j.nanoen.2021.106462http://dx.doi.org/10.1016/j.nanoen.2021.106462.
ZHANG W, LI H, ZHANG Z, et al. Full activation of Mn4+/Mn3+ redox in Na4MnCr(PO4)3 as a high-voltage and high-rate cathode material for sodium-ion batteries[J]. Small, 2020, 16(25): 2001524. DOI: 10.1002/smll.202001524http://dx.doi.org/10.1002/smll.202001524.
ZHU T, HU P, CAI C, et al. Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries[J]. Nano Energy, 2020, 70: 104548. DOI: 10.1016/j.nanoen.2020.104548http://dx.doi.org/10.1016/j.nanoen.2020.104548.
ZHANG W, ZHANG Z, LI H, et al. Engineering 3D well-interconnected Na4MnV(PO4)3 facilitates ultrafast and ultrastable sodium storage[J]. ACS Applied Materials Interfaces, 2019, 11(39): 35746-35754. DOI: 10.1021/acsami.9b12214http://dx.doi.org/10.1021/acsami.9b12214.
ANISHCHENKO D V, ZAKHARKIN M V, NIKTINA V A,et al. Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) materials[J]. Electrochimica Acta, 2020, 354: 136761. DOI: 10.1016/j.electacta.2020.136761http://dx.doi.org/10.1016/j.electacta.2020.136761.
XU C, XIAO R. ZHAO J,et al. Mn-rich phosphate cathodes for Na-ion batteries with superior rate performance[J]. ACS Energy Letters, 2021, 7(1): 97-107. DOI: 10.1021/acsenergylett.1c02107http://dx.doi.org/10.1021/acsenergylett.1c02107.
ZHAO Y J, GAO X W, GAO H C, et al. Elevating energy density for sodium-ion batteries through multielectron reactions[J]. Nano Letters, 2021, 21(5): 2281-2287. DOI: 10.1021/acs.nanolett.1c00100http://dx.doi.org/10.1021/acs.nanolett.1c00100.
XU C, ZHAO J, WANG E, et al. A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high erformance Na+ ion Batteries[J]. Advanced Energy Materials. 2023, 11: 2100729. DOI: 10.1002/aenm.202100729http://dx.doi.org/10.1002/aenm.202100729.
PARK S, CHOTARD J N, CARLIER D, et al. Irreversible electrochemical reaction at high voltage induced by distortion of Mn and V structural environments in Na4MnV(PO4)3[J]. Chemistry of Materials, 2023, 35(8): 3181-3195. DOI: 10.1021/acs.chemmater.2c03787http://dx.doi.org/10.1021/acs.chemmater.2c03787.
BURYAK N S, ANISHCHENKC D V, LEVIN E E, et al. High-voltage structural evolution and its kinetic consequences for the Na4MnV(PO4)3 sodium-ion battery cathode material[J]. Journal of Power Sources, 2022, 518: 230769. DOI: 10.1016/j.jpowsour.2021.230769http://dx.doi.org/10.1016/j.jpowsour.2021.230769.
0
Views
49
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution