1.郑州大学 电气与信息工程学院,河南 郑州 450001
2.河南省网络密码技术重点实验室,河南 郑州 450001
3.天地一体化信息技术国家重点实验室,北京 100086
扫 描 看 全 文
XIONG Songlei, SONG Tianxin, SU Yuwei, et al. A Radio Frequency Fingerprint Identification Method Based on Multi-Feature Fusion and Multi-Task. [J]. J Wuhan Univ (Nat Sci Ed) 69(5):545-552(2023)
XIONG Songlei, SONG Tianxin, SU Yuwei, et al. A Radio Frequency Fingerprint Identification Method Based on Multi-Feature Fusion and Multi-Task. [J]. J Wuhan Univ (Nat Sci Ed) 69(5):545-552(2023) DOI: 10.14188/j.1671-8836.2022.0233.
目前关于射频指纹识别(radio frequency fingerprint identification,RFFI)的研究大多基于单个信号特征,存在识别准确率不高的问题。为此,提出了一种多特征融合多任务的射频指纹识别方法。该方法融合功率谱、基于STFT变换的时频谱、互功率谱三种信号特征,采用多任务学习(multi-task learning,MTL)策略,使用噪声信息作为先验知识来帮助网络训练,以设备分类为主任务,以信号噪声含量的分类作为网络第二个任务。仿真实验表明,本文提出的多特征融合多任务的方法较单特征单任务的方法有所提高,是一种有效的射频指纹识别方法。
Most of the current research on Radio Frequency Fingerprint Identification (RFFI) is based on individual’s single signal feature, which has the problem of low identification accuracy. To this end, this paper proposes a multi-feature fusion multi-task RF fingerprint identification method, which fuses three signals: power spectrum, time-frequency spectrum based on STFT transform, and mutual power spectrum, and uses noise information as a priori knowledge to help network training, with device classification as the main task and classification of signal noise content as the second task of the network for multi-task learning (MTL). Simulation experiments show that the multi-feature fusion multi-task approach proposed in this paper is improved over the single-feature single-task approach and is an effective method for RF fingerprint identification.
物理层安全信号处理射频指纹深度学习特征融合
physical layer securitysignal processingradio frequency fingerprintdeep learningfeature fusion
LUETH K L. State of the IoT 2020[EB/OL]. [2020-11-19]. https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/.
崔宝秋, 宋文宽, 王宝林, 等. 小米“手机×AIoT”安全隐私技术[J]. 武汉大学学报(理学版), 2022, 68(1): 1-7. DOI: 10.14188/j.1671-8836.2021.2000http://dx.doi.org/10.14188/j.1671-8836.2021.2000.
CUI B Q, SONG W K, WANG B L, et al. Xiaomi “smart phone × AIoT” security & privacy technology[J]. Journal of Wuhan University (Natural Science Edition), 2022, 68(1): 1-7. DOI: 10.14188/j.1671-8836.2021.2000(Chhttp://dx.doi.org/10.14188/j.1671-8836.2021.2000(Ch).
ZHANG J Q, LI G Y, MARSHALL A, et al. A new frontier for IoT security emerging from three decades of key generation relying on wireless channels[J]. IEEE Access, 2020, 8: 138406-138446. DOI: 10.1109/ACCESS.2020.3012006http://dx.doi.org/10.1109/ACCESS.2020.3012006.
WANG S, PENG L N, FU H, et al. A convolutional neural network-based RF fingerprinting identification scheme for mobile phones[C]//IEEE INFOCOM 2020 ― IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS). New York: IEEE Press, 2020: 115-120. DOI: 10.1109/INFOCOMWKSHPS50562.2020.9163058http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163058.
PENG L N, ZHANG J Q, LIU M, et al. Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1091-1095. DOI: 10.1109/TVT.2019.2950670http://dx.doi.org/10.1109/TVT.2019.2950670.
RU X H, LIU Z, HUANG Z T, et al. Evaluation of unintentional modulation for pulse compression signals based on spectrum asymmetry[J]. IET Radar, Sonar & Navigation, 2017, 11(4): 656-663. DOI: 10.1049/iet-rsn.2016.0248http://dx.doi.org/10.1049/iet-rsn.2016.0248.
WONG L J, HEADLEY W C, MICHAELS A J. Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7: 33544-33555. DOI: 10.1109/ACCESS.2019.2903444http://dx.doi.org/10.1109/ACCESS.2019.2903444.
牛伟宇, 许华, 刘英辉, 等. 基于PACGAN与差分星座轨迹图的辐射源个体识别[J]. 信号处理, 2021, 37(8): 1559-1567. DOI: 10.16798/j.issn.1003-0530.2021.08.024http://dx.doi.org/10.16798/j.issn.1003-0530.2021.08.024.
NIU W Y, XU H, LIU Y H, et al. Individual identification method based on PACGAN and differential constellation trace figure[J]. Journal of Signal Processing, 2021, 37(8): 1559-1567. DOI: 10.16798/j.issn.1003-0530.2021.08.024(Chhttp://dx.doi.org/10.16798/j.issn.1003-0530.2021.08.024(Ch).
SHEN G X, ZHANG J Q, MARSHALL A, et al. Radio frequency fingerprint identification for LoRa using spectrogram and CNN[C]//IEEE INFOCOM 2021 ― IEEE Conference on Computer Communications. New York: IEEE Press, 2021: 1-10. DOI: 10.1109/INFOCOM42981.2021.9488793http://dx.doi.org/10.1109/INFOCOM42981.2021.9488793.
HUANG D, AL-HOURANI A, SITHAMPARANATHAN K, et al. Deep learning methods for device authentication using RF fingerprinting[C]//2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS). New York: IEEE Press, 2021: 1-7. DOI: 10.1109/ICSPCS53099.2021.9660226http://dx.doi.org/10.1109/ICSPCS53099.2021.9660226.
CHEN S L, XIE F Y, CHEN Y, et al. Identification of wireless transceiver devices using radio frequency (RF) fingerprinting based on STFT analysis to enhance authentication security[C]//2017 IEEE 5th International Symposium on Electromagnetic Compatibility. New York: IEEE Press, 2018: 1-5. DOI: 10.1109/EMC-B.2017.8260381http://dx.doi.org/10.1109/EMC-B.2017.8260381.
王检, 张邦宁, 魏国峰, 等. 基于Welch功率谱和卷积神经网络的通信辐射源个体识别[J]. 电讯技术, 2021, 61(10): 1197-1204. DOI: 10.3969/j.issn.1001-893x.2021.10.001http://dx.doi.org/10.3969/j.issn.1001-893x.2021.10.001.
WANG J, ZHANG B N, WEI G F, et al. Communication transmitter individual identification based on welch power spectrum and convolution neural network[J]. Telecommunication Engineering, 2021, 61(10): 1197-1204 (Ch). DOI: 10.3969/j.issn.1001-893x.2021.10.001http://dx.doi.org/10.3969/j.issn.1001-893x.2021.10.001.
陈天舒, 胡爱群, 姜禹. 基于功率谱特征的Wi-Fi射频指纹提取方法[J]. 信息安全学报, 2021, 6(2): 1-11. DOI: 10.19363/J.cnki.cn10-1380/tn.2021.03.01http://dx.doi.org/10.19363/J.cnki.cn10-1380/tn.2021.03.01.
CHEN T S, HU A Q, JIANG Y. Power spectrum based Wi-Fi RF fingerprint extraction method[J]. Journal of Cyber Security, 2021, 6(2): 1-11. DOI: 10.19363/J.cnki.cn10-1380/tn.2021.03.01(Chhttp://dx.doi.org/10.19363/J.cnki.cn10-1380/tn.2021.03.01(Ch).
贾济铖, 齐琳. 基于双谱的射频指纹提取方法[J]. 太赫兹科学与电子信息学报, 2021, 19(1): 107-111. DOI: 10.11805/TKYDA2019291http://dx.doi.org/10.11805/TKYDA2019291.
JIA J C, QI L. RF fingerprint extraction method based on bispectrum[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(1): 107-111. DOI: 10.11805/TKYDA2019291(Chhttp://dx.doi.org/10.11805/TKYDA2019291(Ch).
DING L D, WANG S L, WANG F G, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591-2594. DOI: 10.1109/LCOMM.2018.2871465http://dx.doi.org/10.1109/LCOMM.2018.2871465.
谢跃雷, 刘信, 梁文斌. 基于循环谱的外辐射源无人机微动特征检测[J]. 电讯技术, 2021, 61(4): 446-453. DOI: 10.3969/j.issn.1001-893x.2021.04.010http://dx.doi.org/10.3969/j.issn.1001-893x.2021.04.010.
XIE Y L, LIU X, LIANG W B. Micro-motion feature detection of UAV based on passive radar and cyclic spectrum[J]. Telecommunication Engineering, 2021, 61(4): 446-453. DOI: 10.3969/j.issn.1001-893x.2021.04.010 (Chhttp://dx.doi.org/10.3969/j.issn.1001-893x.2021.04.010(Ch).
杨晓明, 晋玉剑, 李永红. 经典功率谱估计Welch法的MATLAB仿真分析[J]. 电子测试, 2011(7): 101-104. DOI: 10.3969/j.issn.1000-8519.2011.07.027http://dx.doi.org/10.3969/j.issn.1000-8519.2011.07.027.
YANG X M, JIN Y J, LI Y H. MATLAB simulation and analysis of the Welch method in the classical power spectrum estimation[J]. Electronic Test, 2011(7): 101-104. DOI: 10.3969/j.issn.1000-8519.2011.07.027(Chhttp://dx.doi.org/10.3969/j.issn.1000-8519.2011.07.027(Ch).
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2016: 770-778. DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90.
CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41-75. DOI: 10.1023/A: 1007379606734http://dx.doi.org/10.1023/A:1007379606734.
BAXTER J. A Bayesian/information theoretic model of learning to learn via multiple task sampling[J]. Machine Learning, 1997, 28(1): 7-39. DOI: 10.1023/A: 1007327622663http://dx.doi.org/10.1023/A:1007327622663.
SHEN G X, ZHANG J Q ,MARSHALL A. LoRa_RFFI_dataset [EB/OL]. [2022-02-03]. https://dx.doi.org/10.21227/qqt4-kz19https://dx.doi.org/10.21227/qqt4-kz19.
SHEN G X, ZHANG J Q, MARSHALL A, et al. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 774-787. DOI: 10.1109/TIFS.2022.3152404http://dx.doi.org/10.1109/TIFS.2022.3152404.
0
Views
32
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution