1.陕西中医药大学 医学科研实验中心,陕西 咸阳 712046
Published:24 August 2019,
Received:10 October 2018,
扫 描 看 全 文
Cite this article
王东,杨欢,王瑞辉, 等.蛋白质的化学修饰策略[J].武汉大学学报(理学版),2019,65(4):390-400.
WANG Dong,YANG Huan,WANG Ruihui,et al.Strategies of Chemical Modifications of Proteins [J].J Wuhan Univ (Nat Sci Ed),2019,65(4):390-400.
王东,杨欢,王瑞辉, 等.蛋白质的化学修饰策略[J].武汉大学学报(理学版),2019,65(4):390-400. DOI:10.14188/j.1671-8836.2019.04.011
WANG Dong,YANG Huan,WANG Ruihui,et al.Strategies of Chemical Modifications of Proteins [J].J Wuhan Univ (Nat Sci Ed),2019,65(4):390-400. DOI:10.14188/j.1671-8836.2019.04.011(Ch).
蛋白质的化学修饰反应是在维持蛋白质的完整性与功能的基础上,通过官能团的化学反应获得新的生物缀合物。本文综合分析了蛋白质结构以及反应条件对化学修饰反应的影响,分类评述了蛋白质化学修饰的4种主要方法(氨基修饰、巯基修饰、羧基修饰以及苯羟基修饰)的机理、适用范围以及实际操作中的优劣,并探讨了修饰反应目前面临的问题以及未来发展的方向。
Chemical modification of proteins is a method to attain novel bio-complexes achieved after chemical groups reactions with the sustenance of the structures and functions of proteins. The effects of proteins’ structures and reaction conditions on the modifications were analyzed, and then four types of modifications (primary amines, sulfhydryl, carboxyl and phenol) were presented including their mechanisms, scope of application, and the advantages/disadvantages in applications respectively. Finally, the bottleneck as well as the prospects of chemical modifications of proteins and were discussed.
蛋白质解离常数翻译后修饰化学修饰
proteindissociation constantpost-translational modificationchemical modification
CHO H, DANIEL T, BUECHLER Y J, et al. Optimized clinical performance of growth hormone with an expanded genetic code [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(22):9060-9065. DOI: 10.1073/pnas.1100387108http://dx.doi.org/10.1073/pnas.1100387108.
BOUTUREIRA O, BERNARDES G J L. Advances in chemical protein modification [J]. Chemical Reviews, 2015,115(5):2174-2195. DOI: 10.1021/cr500399phttp://dx.doi.org/10.1021/cr500399p.
PRABAKARAN S, LIPPENS G, STEEN H, et al. Post-translational modification: Nature’s escape from genetic imprisonment and the basis for dynamic information encoding [J]. Wiley Interdisciplinary Reviews Systems Biology & Medicine, 2012, 4(6):565-583. DOI: 10.1002/wsbm.1185http://dx.doi.org/10.1002/wsbm.1185.
COOK K M, HOGG P J. Post-translational control of protein function by disulfide bond cleavage [J]. Antioxidants & redox signaling, 2013,18(15):1987-2015. DOI: 10.1089/ars.2012.4807http://dx.doi.org/10.1089/ars.2012.4807
DELGADO Y, MORALES-CRUZ M, HERNANDEZ-ROMAN J, et al. Chemical glycosylation of cytochrome c improves physical and chemical protein stability [J]. BMC Biochemistry, 2014,15(1):16. DOI: 10.1186/1471-2091-15-16http://dx.doi.org/10.1186/1471-2091-15-16.
KNIGHT J C, CORNELISSEN B. Bioorthogonal chemistry: Implications for pretargeted nuclear (PET/SPECT) imaging and therapy [J]. American Journal of Nuclear Medicine and Molecular Imaging, 2014,4(2):96-113. DOI: ajnmmi1309004http://dx.doi.org/ajnmmi1309004.
ZHANG C, DAI P, VINOGRADOV A A, GATES Z P, et al. Site-selective cysteine-cyclooctyne conjugation [J]. Angewandte Chemie International Edition, 2018, 57(22):6459-6463. DOI: 10.1002/anie.201800860http://dx.doi.org/10.1002/anie.201800860.
KANG B S, BAEK, J H, MACOY, D M et al. N-glycosylation process in both ER and Golgi plays pivotal role in plant immunity [J]. Journal of Plant Biology, 2018, 58(6): 374-382. DOI: 10.1007/s12374-015-0197-3http://dx.doi.org/10.1007/s12374-015-0197-3.
WALSH C T, GARNEAU-TSODIKOVA S, GATTO G J. Protein posttranslational modifications: The chemistry of proteome diversifications [J]. Angewandte Chemie International Edition, 2005, 44(45): 7342-7372. DOI: 10.1002/anie.200501023http://dx.doi.org/10.1002/anie.200501023.
CHUH K N, BATT A R, PRATT M R. Chemical methods for encoding and decoding of posttranslational modifications [J]. Cell Chemical Biology, 2016, 23(1): 86-107.DOI: 10.1016/j.chembiol.2015.11.006http://dx.doi.org/10.1016/j.chembiol.2015.11.006.
FRAENKEL-CONRAT H, OLCOTT H S. The reaction of formaldehyde with proteins. Ⅴ. cross-linking between amino and primary amide or guanidyl groups [J]. Journal of the American Chemical Society, 1948, 70(8): 2673-2684. DOI: 10.1021/ja01188a018http://dx.doi.org/10.1021/ja01188a018.
SPICER C D, DAVIS B G. Selective chemical protein modification [J]. Nature Communications, 2014, 5(1): 1-14. DOI:10.1038/ncomms5740http://dx.doi.org/10.1038/ncomms5740.
QING G, LU Q, XIONG Y, et al. New opportunities and challenges of smart polymers in post-translational modification proteomics [J] Advanced Materials, 2017, 29(20): 1604670. DOI:10.1002/adma.201604670http://dx.doi.org/10.1002/adma.201604670.
PRESCHER J A, DUBE D H, BERTOZZI C R. Chemical remodelling of cell surfaces in living animals [J]. Nature, 2004, 430(7002): 873-877. DOI:10.1038/nature02791http://dx.doi.org/10.1038/nature02791.
SUN S B, SCHULTZ P G, KIM C H. Therapeutic applications of an expanded genetic code [J]. ChemBioChem, 2014,15(12):1721-1729. DOI: 10.1002/cbic.201402154http://dx.doi.org/10.1002/cbic.201402154.
DAY E M P, LIN E, MAYNARD H D. Therapeutic protein-polymer conjugates: Advancing beyond PEGylation [J]. Journal of the American Chemical Society, 2014,136(41):14323-14332. DOI:10.1021/ja504390xhttp://dx.doi.org/10.1021/ja504390x.
CHARI R V J, MILLER M L, WIDDISON W C. Antibody-drug conjugates: An emerging concept in cancer therapy [J]. Angewandte Chemie International Edition, 2014, 53(15): 3796-3827. DOI: 10.1002/anie.201307628http://dx.doi.org/10.1002/anie.201307628.
SASTRE S, CASASNOVAS R, MUNOZ F, et al. Isodesmic reaction for accurate theoretical pKa calculations of amino acids and peptides [J]. Physical Chemistry Chemical Physics, 2016, 18(16): 11202-11212. DOI:10.1039/c5cp07053hhttp://dx.doi.org/10.1039/c5cp07053h.
PACE C N, GRIMSLEY G R, SCHOLTZ J M. Protein ionizable groups: pK values and their contribution to protein stability and solubility [J]. Journal of Biological Chemistry, 2009, 284(20):13285-13289. DOI:10.1074/jbc.r800080200http://dx.doi.org/10.1074/jbc.r800080200.
KARP D A, GITTIS A G, STAHLEY M R, et al. High apparent dielectric constant inside a protein reflects structural reorganization coupled to the ionization of an internal Asp [J]. Biophysical Journal, 2007, 92(6): 2041-2053. DOI: 10.1529/biophysj.106.090266http://dx.doi.org/10.1529/biophysj.106.090266.
WARSHEL A, SHARMA P K, KATO M, et al. Modeling electrostatic effects in proteins [J]. Biochimica et Biophysica Acta — Proteins and Proteomics, 2006, 1764(11):1647-1676. DOI: 10.1016/j.bbapap.2006.08.007http://dx.doi.org/10.1016/j.bbapap.2006.08.007.
LAURENTS D V, HUYGHUES-DESPOINTES B M P, BRUIX M, et al. Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI=3.5) and a basic variant (pI=10.2) [J]. Journal of Molecular Biology, 2003, 325(5): 1077-1092. DOI: 10.1016/S0022-2836(02)01273-1http://dx.doi.org/10.1016/S0022-2836(02)01273-1.
THURLKILL R L, GRIMSLEY G R, SCHOLTZ J M, et al. Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins [J]. Journal of Molecular Biology, 2006, 362(3):594-604. DOI: 10.1016/j.jmb.2006.07.056http://dx.doi.org/10.1016/j.jmb.2006.07.056.
ROMERO C M, OVIEDO C D. Effect of temperature on the solubility of α-amino acids and α,ω-amino acids in water [J]. Journal of Solution Chemistry, 2013, 42(6):1355-1362. DOI: 10.1007/s10953-013-0031-9http://dx.doi.org/10.1007/s10953-013-0031-9.
GUPTA M, da SILVA E F, SVENDSEN H F. Modeling temperature dependency of ionization constants of amino acids and carboxylic acids [J]. The Journal of Physical Chemistry: B, 2013, 117(25): 7695-7709. DOI: 10.1021/jp402496uhttp://dx.doi.org/10.1021/jp402496u.
SOMERO G N. Proteins and temperature [J]. Annual Review of Physiology, 1995, 57 (1) :43-68. DOI: 10.1146/annurev.ph.57.030195.000355http://dx.doi.org/10.1146/annurev.ph.57.030195.000355.
DANIEL R M, PETERSON M E, DANSON M J, et al. The molecular basis of the effect of temperature on enzyme activity [J]. Biochemical Journal, 2010, 425(2): 353-360. DOI: 10.1042/bj20091254http://dx.doi.org/10.1042/bj20091254.
DANIEL R M, DANSON M J, EISENTHAL R, et al. The effect of temperature on enzyme activity: New insights and their implications [J]. Extremophiles, 2008,12(1):51-59. DOI: 10.1007/s00792-007-0089-7http://dx.doi.org/10.1007/s00792-007-0089-7.
PRABHU N V, SHARP K. Protein-solvent interactions [J]. Chemical Reviews, 2006, 106(5): 1616-1623. DOI: 10.1021/cr040437fhttp://dx.doi.org/10.1021/cr040437f.
SCHERAGA H A. Interactions in aqueous solution [J]. Accounts of Chemical Research, 1979, 12(1): 7-14. DOI: 10.1021/ar50133a002http://dx.doi.org/10.1021/ar50133a002.
CHIN J T, WHEELER S L, KLIBANOV A M. On protein solubility in organic solvent [J]. Biotechnology and Bioengineering, 1994, 44(1):140-145. DOI: 10.1002/bit.260440120http://dx.doi.org/10.1002/bit.260440120.
HEMAPRABHA E. Chemical crosslinking of proteins: A review [J]. Journal of Pharmaceutical and Scientific Innovation, 2012, 1(1): 22-26.
SKOOG M T, JENCKS W P. Reactions of pyridines and primary amines with N-phosphorylated pyridines [J]. Journal of the American Chemical Society, 1984, 106(24): 7597-7606. DOI: 10.1021/ja00336a047http://dx.doi.org/10.1021/ja00336a047.
SLETTEN E M, BERTOZZI C R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality [J]. Angewandte Chemie International Edition, 2009, 48(38): 6974-6998. DOI: 10.1002/anie.200900942http://dx.doi.org/10.1002/anie.200900942.
VEANA N E, BUILLES N, KOCAK H, et al. EDC/NHS cross-linked collagen foams as scaffolds for artificial corneal stroma [J]. Journal of Biomaterials Science, Polymer Edition, 2007, 18(12): 1527-1545. DOI: 10.1163/156856207794761961http://dx.doi.org/10.1163/156856207794761961.
MADLER S, BICH C, TOUBOUL D, et al. Chemical cross-linking with NHS esters: A systematic study on amino acid reactivities [J]. Journal of Mass Spectrometry,2009,44(5):694-706. DOI: 10.1002/jms.1544http://dx.doi.org/10.1002/jms.1544.
MACKIE F L, ALLEN S, MORRI R K, et al. Cell‐free fetal DNA-based noninvasive prenatal testing of aneuploidy [J]. The Obstetrician & Gynaecologist, 2017, 13(9):211-218. DOI: 10.1111/tog.12461http://dx.doi.org/10.1111/tog.12461.
DERBALIAN G P, KANEDA N, ROWLEY G L. Fluorescein labeling of Fab’ while preserving single thiol [J]. Analytical Biochemistry, 1988,173(1):59-63. DOI: 10.1016/0003-2697(88)90159-5http://dx.doi.org/10.1016/0003-2697(88)90159-5.
WANG D, STURGIS J N. Making dimers of oligomeric membrane proteins using copper-free click chemistry [J]. F1000Research, 2016, 5(5): 1061. DOI: 10.12688/f1000research.8676.1http://dx.doi.org/10.12688/f1000research.8676.1.
PATIL U S, QU H, CARUNTU D, et al. Labeling primary amine groups in peptides and proteins with N-hydroxysuccinimidyl ester modified Fe3O4@SiO2 nanoparticles containing cleavable disulfide-bond linkers [J]. Bioconjugate Chemistry, 2013,24(9):1562-1569. DOI:10.1021/bc400165rhttp://dx.doi.org/10.1021/bc400165r.
URANO Y, ASANUMA D, HAMA Y, et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes [J]. Nature Medicine, 2009,15(1):104-109. DOI: 10.1038/nm.1854http://dx.doi.org/10.1038/nm.1854.
PENG Z, MCLUCKEY S A. C-terminal peptide extension via gas-phase ion/ion reactions [J]. International Journal of Mass Spectrometry, 2015, 391: 17-23. DOI: 10.1016/j.ijms.2015.07.027http://dx.doi.org/10.1016/j.ijms.2015.07.027.
HUANG Y, FENG W H. N,O-bis(trimethylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as coupling agents for dipeptide synthesis [J]. Chinese Chemical Letters,2016, 27(3): 357-360. DOI: 10.1016/j.cclet.2015.11.012http://dx.doi.org/10.1016/j.cclet.2015.11.012.
YONG-KYU S, HTTTAE J, HYUN K S, et al. A one-step method for covalent bond immobilization of biomolecules on silica operated in aqueous solution [J]. Chemical Science, 2018,9(41): 7981-7985. DOI:10.1039/c8sc02565ghttp://dx.doi.org/10.1039/c8sc02565g.
YAMASAKI M, OGAWA T, WANG L, et al. Anti-obesity effects of hot water extract from Wasabi ( Wasabia japonica matsum.) leaves in mice fed high-fat diets [J]. Nutrition Research and Practice, 2013,7(4):267-272. DOI: 10.4162/nrp.2013.7.4.267http://dx.doi.org/10.4162/nrp.2013.7.4.267.
DUFOU V, STAHL M, BAYSSE C. The antibacterial properties of isothiocyanates [J]. Microbiology, 2015, 161: 229-243. DOI: 10.1099/mic.0.082362-0http://dx.doi.org/10.1099/mic.0.082362-0.
BANK P R, PAQUETTE D M. Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis [J]. Bioconjugate Chemistry, 1995, 6(4): 447-458. DOI: 10.1021/bc00034a015http://dx.doi.org/10.1021/bc00034a015.
NAKAMURA T, KAWAI Y, KITAMOTO N, et al. Covalent modification of lysine residues by allyl isothiocyanate in physiological conditions: Plausible transformation of isothiocyanate from thiol to amine [J]. Chemical Research in Toxicology, 2009, 22(3): 536-542. DOI: 10.1021/tx8003906http://dx.doi.org/10.1021/tx8003906.
NAKAMURA T, KITAMOTO N, OSAWA T, et al. Immunochemical detection of food-derived isothiocyanate as a lysine conjugate [J]. Bioscience, Biotechnology, and Biochemistry, 2010,74(3):536-540. DOI: 10.1271/bbb.90728http://dx.doi.org/10.1271/bbb.90728.
MIYOSHI N. Chemical alterations and regulations of biomolecules in lifestyle-related diseases [J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(6):1046-1053. DOI: 10.1080/09168451.2016.1141037http://dx.doi.org/10.1080/09168451.2016.1141037.
ROBERT L, PENARANDA F S. Studies on aldehyde-protein interactions. Ⅰ. Reaction of amino acids with lower aldehydes [J]. Journal of Polymer Science, 1954, 12(1): 337-350. DOI: 10.1002/pol.1954.120120128http://dx.doi.org/10.1002/pol.1954.120120128.
MACDONALD J I, MUNCH H K, MOORE T, et al. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes [J]. Nature Chemical Biology, 2015,11(5): 326-331. DOI: 10.1038/nchembio.1792http://dx.doi.org/10.1038/nchembio.1792.
ZHANG M, XU W, KE M, et al. Evaluation of individual aging degree by standard-free, label-free LC-MS/MS quantification of formaldehyde-modified peptides [J]. Analyst, 2015, 140(12):4137-42. DOI: 10.1039/c5an00355ehttp://dx.doi.org/10.1039/c5an00355e.
SINZ A. Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes [J]. Journal of Mass Spectrometry, 2003, 38(12): 1225-1237. DOI: 10.1002/jms.559.DOI: 10.1002/jms.559http://dx.doi.org/10.1002/jms.559.DOI:10.1002/jms.559.
PEPINSKY R B, CAPPIELLO D, WILKOWSKI C, et al. Chemical crosslinking of proteins in avian sarcoma and leukemia viruses [J]. Virology, 1980, 102(1): 205-210. DOI: 10.1016/0042-6822(80)90081-1http://dx.doi.org/10.1016/0042-6822(80)90081-1.
DRAZIC A, AKSNES H, MARIE M, et al. NAA80 is actin’s N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17):201718336. DOI: 10.1073/pnas.1718336115http://dx.doi.org/10.1073/pnas.1718336115.
TANAKA K, SIWU E R O, HIROSAKI S, et al. Efficient synthesis of 2,6,9-triazabicyclo[3.3.1]nonanes through amine-mediated formal [4+4] reaction of unsaturated imines [J]. Tetrahedron Letters, 2012, 53(44): 5899-5902. DOI: 10.1016/j.tetlet.2012.08.081http://dx.doi.org/10.1016/j.tetlet.2012.08.081.
TANAKA K, FUKASE K. PET (positron emission tomography) imaging of biomolecules using metal-DOTA complexes: A new collaborative challenge by chemists, biologists, and physicians for future diagnostics and exploration of in vivo dynamics [J]. Organic & Biomolecular Chemistry, 2008, 6(5): 815-828. DOI: 10.1039/b718157bhttp://dx.doi.org/10.1039/b718157b.
TANAKA K, KATASUMURA S, FUKASE K. Discovery and application of 6π-azaelectrocyclization to natural product synthesis and synthetic biology [J]. Science China Chemistry, 2012, 55(1):19-30. DOI: 10.1007/s11426-011-4466-9http://dx.doi.org/10.1007/s11426-011-4466-9.
YOO Y D, MUN S R, JI C H, et al. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 201719110. DOI: 10.1073/pnas.1719110115http://dx.doi.org/10.1073/pnas.1719110115.
CAL P M S D, VICENTE J B, PIRES E, et al. Iminoboronates: A new strategy for reversible protein modification [J]. Journal of the American Chemical Society, 2012, 134(24):10299-10305. DOI: 10.1021/ja303436yhttp://dx.doi.org/10.1021/ja303436y.
NARAYANAN A, JONES L H. Sulfonyl fluorides as privileged warheads in chemical biology [J]. Chemical Science, 2015,6(5):2650-2659. DOI: 10.1039/c5sc00408Jhttp://dx.doi.org/10.1039/c5sc00408J.
MELDAL M, SCHOFFELEN S. Recent advances in covalent, site-specific protein immobilization [J]. F1000Research, 2016, 5:2303. DOI:10.12688/f1000research.9002.1http://dx.doi.org/10.12688/f1000research.9002.1.
SHAH N N, SONI N, SINGHAL R S. Modification of proteins and polysaccharides using dodecenyl succinic anhydride: Synthesis, properties and applications—A review. [J]. International Journal of Biological Macromolecules, 2017, 107: 2224-2233. DOI:10.1016/j.ijbiomac.2017.10.099http://dx.doi.org/10.1016/j.ijbiomac.2017.10.099.
PERMYAKOV E A, MEDVEDKIN V N, KLIMENKO L V, et al. Kinetics of peptide synthesis studied by fluorescence of fluorophenyl esters [J]. Chemical Biology & Drug Design, 1994, 44(5):472-476. DOI:10.1111/j.1399-3011.1994.tb00184.xhttp://dx.doi.org/10.1111/j.1399-3011.1994.tb00184.x.
SLOSARCZYK A T, RAMAPANICKER R, NORBERG T, et al. Mixed pentafluorophenyl and o-fluorophenyl esters of aliphatic dicarboxylic acids: Efficient tools for peptide and protein conjugation [J]. RSC Advances, 2012, 2(3):908-914. DOI: 10.1039/c1ra00530hhttp://dx.doi.org/10.1039/c1ra00530h.
CHALKER J M, BERNARDES G J L, LIN Y A, et al. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology [J]. ChemInform, 2009, 40(30):630-640. DOI: 10.1002/asia.200800427http://dx.doi.org/10.1002/asia.200800427.
MICHAEL A, SCHULTHESS O. Üeber die addition von natriumacetessig-und ntriummalonsäureäthern zu den aethern ungesättigter Säuren [J]. Advanced Synthesis & Catalysis, 2010, 45(1):55-63. DOI:10.1002/prac.18910450104http://dx.doi.org/10.1002/prac.18910450104.
KALIA J, RAINES R T. Catalysis of imido group hydrolysis in a maleimide conjugate [J]. Medicinal Chemistry Letters, 2007, 17(22): 6286-6289. DOI:10.1016/j.bmcl.2007.09.002http://dx.doi.org/10.1016/j.bmcl.2007.09.002.
LYON R P, SETTER J R, BOVEE T D, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates [J]. Nature Biotechnology, 2014, 32(10):1059-1062. DOI: 10.1038/nbt.2968http://dx.doi.org/10.1038/nbt.2968.
BRIAN H N, STEPHEN H F, UMESH U C. Thiol-maleimide “Click” chemistry: Evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity [J]. Polymer Chemistry, 2015, 6(18):3415-3430. DOI: 10.1039/C5PY00168Dhttp://dx.doi.org/10.1039/C5PY00168D.
ELSCHNER T, OBST F, HEINZE T, et al. Reactive maleimido dextran thin films for cysteine‐containing surfaces adsorbing BSA [J]. Macromolecular Chemistry & Physics, Physics, 2017, 218(16): 1600535. DOI:10.1002/macp.201600535http://dx.doi.org/10.1002/macp.201600535.
OUYANG F, ZHAO Z, GAO R, et al. Dual maleimide tagging for relative and absolute quantitation of cysteine‐containing peptides by MALDI-TOF MS [J]. ChemBioChem, 2018, 19(11): 1154-1161. DOI: 10.1002/cbic.201800031http://dx.doi.org/10.1002/cbic.201800031.
BETTING D J, KAFI K, ABDOLLAHI-FARD A, et al. Sulfhydryl-based tumor antigen-carrier protein conjugates stimulate superior antitumor immunity against B cell lymphomas [J]. The Journal of Immunology, 2008, 181(6): 4131-4140. DOI: 10.4049/jimmunol.181.6.4131http://dx.doi.org/10.4049/jimmunol.181.6.4131.
GODDARD D R, MICHAELIS L. Derivatives of keratin [J]. Journal of Biological Chemistry, 1935, 112(6): 361-371.
KAISER E T, LAWRENCE D S. Chemical mutation of enzyme active sites [J]. Science, 1984, 226(4674): 505-511. DOI: 10.1126/science.6238407http://dx.doi.org/10.1126/science.6238407.
LINDLEY H. A new synthetic substrate for trypsin and its application to the determination of the amino-acid sequence of proteins [J]. Nature, 1956, 178(4534): 647. DOI: 10.1038/178647a0http://dx.doi.org/10.1038/178647a0.
ROBERTS M J, BENTLEY M D, HARRIS J M. Chemistry for peptide and protein PEGylation [J]. Advanced Drug Delivery Reviews, 2012, 64:116-127. DOI: 10.1016/j.addr.2012.09.025http://dx.doi.org/10.1016/j.addr.2012.09.025.
MEANST G E, FEENEY R E. Chemical modifications of proteins:History and applications [J]. Bioconjugate Chemistry, 1990, 1(1): 2-12. DOI: 10.1021/bc00001a001http://dx.doi.org/10.1021/bc00001a001.
YANDONG Z, ROBERT M N, XIANGYU C, et al. Cross-linking of orai1 channels by STIM proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): E3398-E3407. DOI:10.1073/pnas.1720810115http://dx.doi.org/10.1073/pnas.1720810115.
BROCCHINI S, GODWIN A, BALAN S, et al. Disulfide bridge based PEGylation of proteins [J]. Advanced Drug Delivery Reviews, 2008, 60(1): 3-12. DOI: 10.1016/j.addr.2007.06.014http://dx.doi.org/10.1016/j.addr.2007.06.014.
BADESCU G, BRYANT P, BIRD M, et al. Bridging disulfides for stable and defined antibody drug conjugates [J]. Bioconjugate Chemistry, 2014, 25(6):1124-1136. DOI: 10.1021/bc500148xhttp://dx.doi.org/10.1021/bc500148x.
WANG T, NG D YW, WU Y, et al. Bis-sulfide bioconjugates for glutathione triggered tumor responsive drug release [J]. Chemical Communication, 2014, 50(9):1116-1118. DOI: 10.1039/c3cc47003bhttp://dx.doi.org/10.1039/c3cc47003b.
MARCULESCU C, KOSSEN H, MORGAN R E, et al. Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds [J]. Chemical Communication, 2014, 50(54):7139-7142. DOI: 10.1039/c4cc02107jhttp://dx.doi.org/10.1039/c4cc02107j.
CASTANEDA L, MARUANI A, SCHUMACHER F F, et al. Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation [J]. Chemical Communication,2013, 49(74):8187-8189. DOI: 10.1039/c3cc45220dhttp://dx.doi.org/10.1039/c3cc45220d.
WILMA N, NOLAN E M. Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics [J]. Journal of Biological Inorganic Chemistry, 2018, 23(7): 1025-1036. DOI: 10.1007/s00775-018-1588-yhttp://dx.doi.org/10.1007/s00775-018-1588-y.
WIKIPEDIA. 2-Mercaptoethanol[EB/OL].[2018-10-08]. https://en.wikipedia.org/wiki/2-Mercaptoethanolhttps://en.wikipedia.org/wiki/2-Mercaptoethanol.
KOVALEVA G G, SHIMANSKAYA M P, STEPANOV V M. The site of diazoacetyl inhibitor attachment to acid proteinase of Aspergillus awamori an analog of penicillopepsin and pepsin [J]. Biochemical and Biophysical Research Communications, 1972, 49(4):1075-1081. DOI: 10.1016/0006-291x(72)90322-1http://dx.doi.org/10.1016/0006-291x(72)90322-1.
LUNDBLAD R L, STEIN W H. On the reaction of diazoacetyl compounds with pepsin [J]. Journal of Biological Chemistry, 1969, 244(1):154-160.
ANDERSON G W, PAUL R. N,N′-Carbonyldiimidazole, a new reagent for peptide synthesis [J]. Journal of the American Chemical Society, 1958, 80(16):4423-4432. DOI: 10.1021/ja01549a078http://dx.doi.org/10.1021/ja01549a078.
GILLES M A, HUDSON A Q, BORDERS C L. Stability of water-soluble carbodiimides in aqueous solution [J]. Analytical Biochemistry, 1990, 184(2):244-248. DOI: 10.1016/0003-2697(90)90675-Yhttp://dx.doi.org/10.1016/0003-2697(90)90675-Y.
SCHLICK T L, DING Z, KOVACS E W, et al. Dual-surface modification of the tobacco mosaic virus [J]. Journal of the American Chemical Society, 2005, 127(11): 3718-3723. DOI: 10.1021/ja046239nhttp://dx.doi.org/10.1021/ja046239n.
TOTARO K A, LIAO X, BHATTACHARYA , K. Systematic Investigation of EDC/sNHS-Mediated Bioconjugation Reactions for Carboxylated Peptide Substrates [J]. Bioconjugate Chemistry, 2016, 27: 994-1004. DOI: 10.1021/acs.bioconjchem.6b00043http://dx.doi.org/10.1021/acs.bioconjchem.6b00043.
MCFARLAND J M, JOSHI N S, FRANCIS M B. Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy [J]. Journal of the American Chemical Society, 2008, 130(24):7639-7644. DOI: 10.1021/ja710927qhttp://dx.doi.org/10.1021/ja710927q.
ROMANINI D W, FRANCIS M B. Attachment of peptide building blocks to proteins through tyrosine bioconjugation [J]. Bioconjugate Chemistry, 2008, 19(1):153-157. DOI: 10.1021/bc700231vhttp://dx.doi.org/10.1021/bc700231v.
JOSHI N S, WHITAKER L R, FRANCIS M B. A three-component mannich-type reaction for selective tyrosine bioconjugation [J]. Journal of the American Chemical Society, 2004, 126(49):15942-15943. DOI: 10.1021/ja0439017http://dx.doi.org/10.1021/ja0439017.
GUO H M, MINAKAWA M, UENO L, et al. Synthesis and evaluation of a cyclic imine derivative conjugated to a fluorescent molecule for labeling of proteins [J]. Bioorganic and Medicinal Chemistry Letters, 2009,19(4):1210-1213. DOI: 10.1016/j.bmcl.2008.12.071http://dx.doi.org/10.1016/j.bmcl.2008.12.071.
TILLEY S D, FRANCIS M B. Tyrosine-selective protein alkylation using π-allylpalladium complexes [J]. Journal of the American Chemical Society, 2006, 128(4):1080-1081. DOI: 10.1021/ja057106khttp://dx.doi.org/10.1021/ja057106k.
CHEN S, LI X, MA H. New approach for local structure analysis of the tyrosine domain in proteins by using a site-specific and polarity-sensitive fluorescent probe [J]. ChemBioChem, 2009, 10(7): 1200-1207. DOI: 10.1002/cbic.200900003http://dx.doi.org/10.1002/cbic.200900003.
CSEREP G B, HERNER A, WOLFBEIS O S, et al. Tyrosine specific sequential labeling of proteins [J]. Bioorganic and Medicinal Chemistry Letters, 2013,23(21):5776-5778. DOI: 10.1016/j.bmcl.2013.09.002http://dx.doi.org/10.1016/j.bmcl.2013.09.002.
TAKAOKA Y, OJIDA A, HAMACHI I. Protein organic chemistry and applications for labeling and engineering in live-cell systems [J]. Angewandte Chemie International Edition, 2013, 52(15):4088-4106. DOI: 10.1002/anie.201207089http://dx.doi.org/10.1002/anie.201207089.
AGRAWAL D, HACKENBERGER C P R. Site-specific chemical modifications of proteins [J]. Indian Journal of Chemistry—Section A, 2013, 52(8-9): 973-991.
FODJE M N, AL-KARADAGHI S. Occurrence, conformational features and amino acid propensities for the π-helix [J]. Protein Engineering, 2002, 15(5):353-358. DOI: 10.1093/protein/15.5.353http://dx.doi.org/10.1093/protein/15.5.353.
BARRADAS R G, FLETCHER S, PORTER J D. The hydrolysis of maleimide in alkaline solution [J]. Canadian Journal of Chemistry, 1976, 54(9): 1400-1404. DOI: 10.1139/v76-200http://dx.doi.org/10.1139/v76-200.
KJAN M N. Kinetics and mechanism of the alkaline hydrolysis of maleimide [J]. Journal of Pharmaceutical Sciences, 1984, 73(12):1767-1771. DOI: 10.1002/jps.2600731227http://dx.doi.org/10.1002/jps.2600731227.
EDWARDS J O, PEARSON R G. The factors determining nucleophilic reactivities [J]. Journal of the American Chemical Society, 1962, 84(1):16-24. DOI: 10.1021/ja00860a005http://dx.doi.org/10.1021/ja00860a005.
0
Views
11
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution